Hearing June 13, 2024

Veritext Legal Solutions
Calendar-Idaho@veritext.com 208-343-4004

Hearing June 13, 2024

2 (Pages 2-5)

1 extern.

2 MR. MAROTZ: Yes. We have Jennifer
3 Shalforen, an extern from the Attorney General's Office.
4 James Thum, the oil and gas program manager for the
5 Idaho Department of Lands. And I'm representing the
6 Idaho Department of Lands, as well.
7 THE HEARING OFFICER: For the Office of 8 Administrative Hearings we also have present Scott
9 Zanzig, one of our administrative law judges. And
10 Xavier Suarez, our legal extern for the summer. Neither
11 which are impeding within decisional independence. I'm
12 the hearing officer and sole decider in this matter.
13 Mr. Piotrowski, would like to introduce
14 yourself at this time.
15 MR. PIOTROWSKI: Sure. James Piotrowski with
16 Piotrowski Durand, PLLC, on behalf of Karen Oltman and 17 CAIA.
18 THE HEARING OFFICER: And then, Mr. Christian,
19 would you like to introduce your witnesses that are
20 present here today.
21 MR. CHRISTIAN: Thank you, Ms. Hearing
22 Officer. I have via zoom today Wade Moore, who is a
23 land man working for Snake River. And Dave Smith, who
24 is a geologist working for Snake River.
25 THE HEARING OFFICER: And also present is
Page 6
1 Richard Brown.
2 MR. CHRISTIAN: Oh, yes. And Richard Brown is 3 the manager of Snake River Oil and Gas, the Applicant.
4 I don't believe he will be testifying, but he is on zoom
5 watching the proceedings.
6 THE HEARING OFFICER: Okay. With that the 7 floor is yours, Mr. Christian.
8 MR. CHRISTIAN: The applicant would call Wade 9 Moore.
10 THE HEARING OFFICER: I will ask the court 11 reporter to swear the witness.

WADE MOORE,

14 first duly sworn to tell the truth relating to said
15 cause, testified REMOTELY as follows:
16
17 DIRECT EXAMINATION
QUESTIONS BY MR. CHRISTIAN:
Q. Mr. Moore, are you land man working for Snake River?
21 A. Yes, sir.
22 Q. And how long have you worked for Snake River in Idaho?
A. Next month -- well, for Snake River in

Idaho -- I have been in Idaho working this area for
eleven years. The last four years directly with Snake
River.
Q. And you worked for a predecessor operator
before that?
A. That's correct.
Q. Are you -- first of all, did you provide a
declaration as part of Snake River's application in this
case? I'm sorry. Let me back up.
Are you familiar with Snake River's Exhibit SR-01, which is the application materials?
A. Yes, sir.
Q. And SR-02, which is the certified mailing receipts?
A. Yes, sir.
Q. Okay. Do the certified mailing receipts in SR-02 reflect the mailing of application materials to the uncommitted owners in the unit and uncommitted adjacent owners?
A. Yes, they do.
Q. And were you the person that accomplished those mailings?
A. Yes, I did. On May the 6th.
Q. And did you also mail the application materials and a notice to Payette County?
A. I did.
Q. Can you tell me whether there were -- are
there any working interest owners in the unit or adjacent to the unit other than Snake River?
A. No, there are no other working interest owners.
Q. Were there any mineral owners you cannot 7 locate?
A. Nope. Everyone was locatable.
Q. And the uncommitted owners in the area are identified on Exhibit SR-01 by number; are they?
A. Yes.
Q. And they are indexed to a list, which is on -that are on pages six and seven to Exhibit SR-O1?
A. That's correct; yes.
Q. And so the uncommitted owners are identified on the list?
A. Yes, sir.

MR. CHRISTIAN: I don't have any further questions.

THE HEARING OFFICER: Mr. Piotrowski, do you have any questions for this witness?

MR. PIOTROWSKI: Yes, I do.
3 I/I
4 III
25 //I
Page 7

CROSS-EXAMINATION QUESTIONS BY MR. PIOTROWSKI:

Q. Mr. Moore, how did you develop that list? The list of people you mailed to?
A. Title research.
Q. And you said your list includes all of the uncommitted owners in the unit. Which unit are you referring to?
A. The North Harmon unit.
Q. And explain to us why you call it the North Harmon unit?
A. That is the name the company has added -- put those two places together. I'm not the one who names the units.
Q. So when you refer to the Harmon unit -- North

Harmon that is what Snake River Oil and Gas is calling this area?
A. That's correct.
Q. And how did you go about determining what would be the outline, the size, of the North Harmon unit?
A. Again, that is not my area of expertise.
Q. Okay. So you said you looked up the mineral interest owners in that unit. Did you look those up yourself?

Page 10
A. Not myself in entirety; no. We had a team working on it.
Q. But you were involved in that process?
A. Yes.
Q. Okay. And why did you choose to look up mineral owners adjacent to the North Harmon unit?
A. Those we had of record. What we did with that is we had two adjacent. And we had -- we had sent previous leases to these people as well. So this was nothing new. We had record of these people already.
Q. And did you make the decision that you were going to send the notice to those who owned property adjacent to the unit? Or was that somebody else's decision?
A. It wasn't my decision directly; no.
Q. And, Mr. Moore, do you have any specific
training in interpreting the statutes of the State of
Idaho?
A. I can read as far as --
Q. Okay. Are you familiar with the rules of
statutory instruction that lawyers and hearing officers typically use?
A. I'm not tracking where you are going.
Q. I'm trying to establish the level of your
familiarity with the relevant law on this is all. I'm

1 just trying to figure out how much you know about the
2 statute before I ask additional questions.
A. Regarding what?
Q. Mr. Moore, what is the difference between an

5 uncommitted mineral interest owner and an uncommitted
6 owner in the unit? If I put those two phrases in front
7 of you would you understand how they were different?
A. I would title the uncommitted interest owners

9 to the unit. And the other title speaks for itself.
0 They are outside of the unit.
Q. And so if somebody were to say to you

12 uncommitted mineral interest owner, just those words,
that could mean an owner either inside the unit or
outside of the unit or anywhere at all; right?
A. It could.

MR. CHRISTIAN: I'm going to object at this
point. Mr. Piotrowski is asking a land man to offer I
think legal opinion about the meaning of the statute.
Which is certainly a subject for Mr. Piotrowski to argue to you, madam hearing officer.

THE HEARING OFFICER: Mr. Piotrowski, do you
have a response to that objection?
MR. PIOTROWSKI: Mr. Moore just told us he was familiar with the relevant law. So I was just following up with that assuming that he was accurate with that Page 12
answer. And so, yes, I'm asking him to start telling me what he understands in the statute.

THE HEARING OFFICER: I can have Mr. Moore clarify. But I think what he testified to was that he wasn't entirely sure what you were asking and to ask your next question. Mr. Moore.

THE WITNESS: Yeah. I have no idea what we are trying to accomplish here.

THE HEARING OFFICER: So I'm going to sustain
the objection to the extent that you are asking him to
interpret any legal arguments that may govern these proceedings, Mr. Piotrowski.

MR. PIOTROWSKI: Okay.
THE HEARING OFFICER: But to the extent you
want to question him about how he determined who was an
uncommitted mineral interest and an uncommitted mineral
interest owner for purposes of the mailings you are
welcome to ask those questions.
Q. (BY MR. PIOTROWSKI) Mr. Moore, were you instructed to send the notices to the adjacent owners?
Or was that a decision that you made in your job as land man?
A. It was not a decision I made.
Q. Okay. Were you involved at all in the
decision to mail to adjacent landowners? Or did you
Page 13

```
simply execute that decision?
MR. CHRISTIAN: Objection. Asked and
answered.
4 MR. PIOTROWSKI: I'm trying to make sure we
are clear.
6 THE HEARING OFFICER: I'll let him answer that
question. Go ahead, Mr. Moore.
8 THE WITNESS: I did not make the decision. I
mean, it is the same question. Were they mailed? Yes.
Did I make a decision to mail them? No.
    Q. (BY MR. PIOTROWSKI) And in the case where you
sought to identify the holder of a mineral interest you
were able to do so; right?
    A. Yes.
    Q. And that includes the adjacent owners that you
had to locate? You had no difficulty identifying them
so you could provide them notice; is that fair?
    A. That's fair.
    Q. And presumably -- you've worked now in Payette
County for a number of years it sounds like. Is that
correct?
    A. That's correct.
    Q. And It sounds like -- would you say that from
the quality of the Payette County land records you can
identify the mineral interest owners in the surrounding
```

land sections if you wished to?
A. If we wish to; sure.
Q. Have you worked in states other than Idaho as
a land man?
A. Yes.
Q. And would you say that in Payette County,
Idaho the accessible land records are good, bad,
average? Do you have an opinion about that?
A. Well, I mean, there is no standard. It
varies. So are they user friendly. Some. I don't
know. It is hard a question to answer. My experience
is there is from zero information online. To Payette
County has information online. It is all over the
board. Each county is different. I mean, I don't know
how to answer that.
Q. Fair enough. Other than the categories you
have already testified that you said you researched and
sent the notice to uncommitted mineral interest owners
in the unit, uncommitted mineral interest owners
adjacent to the unit, and you looked for but determined
there were no working interest owners.
Did you send the notice to any other
categories of people or entities?
24 A. That was it. Well, Payette County.
25 Q. Yeah. Besides Payette County. Now, Payette
Page 15

County is also a mineral interest owner in this unit;
aren't they?
A. Payette County is not --
Q. Is the City of Fruitland?
A. The City of Fruitland is.
Q. Okay. So you sent it to the City of Fruitland
as an owner. And to Payette County because the statute requires that. Is that right?
A. That's correct.

MR. PIOTROWSKI: Thank you. That is all the questions I have.

THE HEARING OFFICER: Thank you, Mr.
Piotrowski. Mr. Marotz, any questions for this witness?
MR. MAROTZ: Not at this time.
THE HEARING OFFICER: Any redirect?
MR. CHRISTIAN: No. Thank you.
THE HEARING OFFICER: May this witness be excused?

MR. CHRISTIAN: Yes, ma'am.
THE HEARING OFFICER: Mr. Moore, you are welcome to stay on and listen to these proceedings if you desire. Otherwise, you are free to leave if you have other things you would like to do today.

THE WITNESS: All right. Thank you.
THE HEARING OFFICER: Mr. Christian, your next
Page 16
witness.
MR. CHRISTIAN: We call David Smith.

DAVID SMITH,

first duly sworn to tell the truth relating to said cause, testified REMOTELY as follows:

EXAMINATION
QUESTIONS BY MR. CHRISTIAN:
Q. Dave, can you tell us where you're testifying from?
A. I'm testifying from Houston, Texas.
Q. And what is your occupation?
A. I'm a geologist/geophysicist.
Q. And can you briefly describe your educational background as it relates to your profession?
A. Sure. I have a bachelor of science in geology from Virginia Tech in 1983. And I have taken a lot of additional classes in Houston in geophysics. And industry courses offered in various geologic and geophysical topics through the years. Continuing education and such.
Q. Have you worked in the oil and gas industry as a geologist and a geophysicist for some time?
A. Yes. Over 40 years. Since the summer of Page 17
1983.
Q. And can you briefly describe your professional experience?
A. I started actually working in college in summers --

THE COURT REPORTER: He is going to have to speak up. I am having a hard time hearing.

THE WITNESS: I will try to turn it up on my end.

THE HEARING OFFICER: Let's try that,
Mr. Smith. If we need to turn the speakers off here in the room and do it from the laptop we can do that as well.

MR. CHRISTIAN: I'll give you the same instruction I have received many times over the years. Which is slow down and speak slowly. It is much easier
for the court reporter. I have been yelled at many
times in my career for going too fast.
THE WITNESS: Okay. I will.
Q. (BY MR. CHRISTIAN) All right. I think where
we left off I was asking you to summarize your
professional experience and you started by saying you did some work while you were still in college.
A. Yes. In the summers I worked on drilling
rigs. And I just mentioned that because it gave me
Page 18
real, in my view, valuable insight as to how operations
are conducted in the field. And how well logs are
acquired. And the quality of the data. And so forth.
My first professional job as a geologist was starting in
the summer of '83. And I have been employed in the oil
and gas industry since then. And positions of
increasing responsibility. I have worked at probably
most of the productive oil and gas basins in the United
States. And a lot of basins internationally. My
experience is exploration and development. And also
acquisition and evaluation of producing oil and gas
properties. Specific to the Rockies. I have worked in
Colorado and Utah. Idaho of course. And Oregon.
Starting in the mid to late '90s in this field of area
in Oregon. And in Idaho in 2012.
Q. And do you currently provide geology and geophysical consulting services to Snake River in Idaho?
A. I do. I'm also a working interest partner in the project.
Q. And as part of that work are you familiar with the proposed unit area involved in this proceeding, which is the NE $1 / 4$ of Section 9 and the NW $1 / 4$ of Section 10 ?
A. Yes, I am.
Q. And it sits just to the north of the unit for

1 the existing Fallon $1-10$ well; is that right?
A. Yes, it does.

3 Q. And are you familiar with the application 4 materials in this matter?
A. Yes, I am.
Q. And, in fact, you provided a declaration in
support of the application that is part of the
8 application materials?
A. Yes. I wrote a declaration based on my
opinions in this area. And also constructed the exhibits.
Q. And can you -- and we'll get into more depth.

But can you briefly state the conclusions that are set
forth in your declaration?
A. I think the most salient conclusion is that we feel that we have very strong evidence based on our experience in the basin -- my experience in the basin -our 3D seismic data. And the evidence from the local wells that we have drilled. And the geophysical logs that we have collected in those wells. And the production of oil, gas, and condensate in the area and very locally. That there is a very high likelihood of a gas pool comprised of Sand A and B. With a general outline as indicated on the exhibits. And we can get into specifics I guess.

Page 20
1 Q. Is it your opinion that the unit area that is 2 proposed reasonably describes an area that is
3 economically and efficiently drainable by one well into 4 those sands?
A. Yes.
Q. I want to back up and talk more generally 7 about the information that you developed to reach your 8 opinions and how. Can you briefly describe generally
how you acquire information and knowledge about the geography in the area? I'm sorry, geology in the area?
A. Okay. Well, I was the vice president and geoscientist with the predecessor company that started up in here in 2012. And we were partners with that group. And we became aware of activity in Idaho. And we became interested in participating with a prior company, Bridge. And pursued a joint venture with them.
They ultimately became insolvent and we acquired their properties from them, their leases, and some wells they
had drilled. We, as a team, a pretty large geoscience
team at the time, with a couple of very learned local
gentlemen that helped us to get educated in the basin.
And also with a substantial geoscience team here in
Houston. We tried to become as educated as we could on
4 the basin. Including lots of field trips. Review of
all of the existing wells that had previously been

1 drilled. And tried to understand the complexities of
2 the basin and how we might ultimately drill a successful
3 oil and gas well here in this area.
4 It was my opinion based on the work I have 5 done in Oregon that we needed to shoot what is called 3D
6 seismic data. Which is an expensive proposition. But
7 it allows you to get a very good image of the subsurface
8 of the earth. And with our partners elected to do so.
9 And in 2013 we acquired our first 3D seismic survey.
10 And in subsequent years, 2014 and 2015, we acquired more
11 of this 3D seismic in the area. And if I might use
12 analogy. If you could imagine an extremely large chess
13 board placed above the surface of the earth. At each
14 one of the corners of the squares is a data point,
15 common depth point, and we -- with a 3D seismic method
16 you lay out a very carefully, precisely surveyed in
17 series of areas that you input energy into the earth
18 called a source point. And areas where you collect the
19 reflected energy called a receiver point. And we will
20 have what is called a spread. The recording equipment.
21 Which literally has 10,000 to 12,000 microphones. It is
22 a low frequency microphone call a geophone that will
23 record those reflections from the subsurface of the
24 earth. And we will very methodically go through and
25 put energy using a large sort of a -- it looks like a
Page 22
road grader with a vibrator on the back of it. And it
2 sets the pad down and it puts energy at a certain
3 frequency called a sweep into the earth. And it is
4 recorded by all of those different receivers or
5 geophones around. And this takes months to do this. And
6 it is expensive. But what it does is it gives you a
very good image where you have sufficient coverage of
8 what is going on in the subsurface. The other thing it
9 does is it eliminates a lot of the drilling of
10 unnecessary wells or dry holes. Or unsuccessful wells.
11 And the 3D seismic process itself is very low impact to
12 the ground. And of course we maintain spacings around
13 minimal distances away from houses and utilities and
14 water wells and things like that.
Q. Were you responsible for designing the seismic

16 project that covers the area that includes the proposed
17 unit in this proceeding?
18 A. I was. I designed it, bid it out, supervised
19 it, and oversaw the processing. And did the
20 interpretation. And was the primary interpreter of it.
21 Q. Okay. Do you also derive information from
22 other wells that either Snake River has drilled or
23 someone else has drilled in the area?
24 A. Absolutely. We look at all of the available
25 information. When we began this project of course we
Page 23

1 had not drilled any wells. And what wells had been
2 drilled were fairly widely scattered. But those were
3 the wells that we used to help inform our thinking and
4 drive our interpretations. Since we --
Q. Just briefly can you summarize how you get

6 information from the drilling of other wells and how
that information is presented?
A. Surely. The old wells might just have a
lithology \log where as they were drilling the drillers would record on a per foot basis the types of rocks that they were drilling through, i.e., sand at 900 feet to 920 feet. Something like that. Or it shows oil and gas that they got. Starting in the -- really more in this basin the '50s is when we started to get more modern logs. And then there was another scattered population of wells in the '70s. And then immediately preceding us was an operator called Bridge that drilled eleven wells. None of which were successful. But one of which had a good show of oil and gas. And we ultimately hooked it up. It was noncommercial. But it gave us confidence that there was a chance to find commercial oil and gas in the basin. And the more modern wells have -- after the well is drilled we will lower geophysical tools into the well and measure various physical properties of the rock. There is an induction log which measures the Page 24

1 ability of electrical current to go through the rock.
2 There is gamma ray monitor that measures the amount of
3 gamma ray radiation that comes out which allows you to
4 make lithological or rock type descriptions. There is a
5 sonic log which is -- it looks like a little torpedo and
6 it puts sound into the formation on one end and records
7 it on the other end and measures the speed as the sound
8 goes through the rock. There is a density log and a
9 neutron \log that allows you to estimate the porosity of
0 rock. We put all of these logs together and you can
come up with an interpretation of what is in the
subsurface. Is it a clay stone. Is it a sand. Is it a
basalt. What is it. And so we will use the information
gained from prior operators going back a hundred years.
Some of the wells in this basin are 1902, 1903. And
we'll incorporate all of that information into our
thinking as to what is going on in the geologic history.
And where we might find a sand or a potential reservoir that has oil and gas in it.
Q. In this case you are primarily targeting what we called Sands A and B; right?
A. Correct.
Q. And we'll get into this in some more detail.

But the nearby Fallon 1-10 well, for example, did it
encounter those same sands?

7 (Pages 22-25)

1 A. Yes, it did. And that was the second well we 2 drilled in this area. I think we drilled eight or nine
3 wells to the east of here when we drilled the Fallon
4 1-10. Immediately prior to that we drilled the Barlow
$51-14$ and -- on what we call our calibrated 3D seismic
6 survey. And that Fallon 1-10 well was a dual objective
7 targeting Sand A and Sand B. And when we drilled the
8 well we found at Sand A approximately 12 feet -- which
9 is what's called behind pipe right now. It is not being
10 produced. It will be produced later when we complete
11 the deeper zone. And it is producing oil and gas right
12 now from Sand B. And it has produced about 1.2 billion
13 cubic feet of natural gas. And I think around 20,000
14 barrels of condensate and natural gas liquids. I don't
15 recall that number off the top of my head.
16 But to answer that question, using the
17 techniques that we do, and the 3D seismic, prior to
18 drilling we bought leases, formed a unit, drilled a
19 well, all in anticipation of making a discovery in Sands
20 A and B , which we subsequently drilled a well and did do
21 based on the same techniques that we are using to
22 presume to have a pool that is worth developing in this
23 proposed new unit.
24 Q. And are there other sands below Sands A and B
25 that you wish to explore in a well in the proposed unit?
Page 26
1 A. Yes. We carried, as I said in this area,
2 which we call the Harmon area, we carried the Fallon
3 1-10 well about 2,000 feet or so deeper than the
4 objective A and B specifically. Because this is a --
5 what we would call a frontier, a lightly explored basin,
6 to see other sands below it. And we got some gas
shadows in Sand B in the Fallon 1-10 well. And we were
able to use that information and drill a successful well
later to the east of this area called the Fallon 1-11.
10 Which is productive in those sands. And another reason
11 to drill the Fallon 1-10 well deeper was to encounter
12 what we predicted would be a basalt sill around 5,000
13 feet. I don't recall the exact depth. Which generated
14 a very strong seismic response. We wanted to get a
15 physical subsurface time/depth pair at that point, which
16 helps us with forecasting and predicting our depth of
17 the various formations in the area. So in this case
18 with the proposed well, and the proposed new unit, we
19 would intend to carry the well deeper below Sands A and
20 B and sample a deeper section. Primarily Sands D and
21 the ones below. We haven't -- assuming that we -- or
22 presuming that we can get the unit successfully formed,
23 and the drilling permit approved, we would intend to
24 drill deeper.
25
Q. Okay. So as a basic matter, with a

1 combination of seismic data, and well log information
2 from a nearby well, can you correlate from formations
found in the nearby well to what you would expect to
find in the proposed unit area?
A. Yes.
Q. Okay. Can you share your screen with -- I
want to go through your exhibits, the exhibits to your declaration, briefly at first so you can describe for us
what they are. And then we'll go back through them in some detail.
A. All right.
Q. Rather than go A, B, C, can we start with

Exhibit C to your declaration, which is, for the record, I think it is Exhibit SR-01 at page 17.
A. Can you all see that?
Q. Yes. Can you just briefly summarize what Exhibit C to your declaration illustrates?
A. Okay. There is a lot of information on here. But I will just start with a few basic things and then maybe we can come back to it. Is that right?
Q. Yes.
A. Okay. So I think the first thing to point out. This maroon rectangle that I am outlining with my curser is our proposed 320 acre unit. The proposed new unit. And you can see on the exhibit -- and this is

Page 28
1 page 17. Exhibit C. It is annotated in maroon
2 "Proposed New Unit Boundary." And there is a lot of 3 information here which I'll get to as we develop this.
4 But a couple of salient points that I want to cover real
5 quickly. There are a couple of extracted what we call
6 arbitrary lines. One thing I will point out just for --
7 before we get into what all of these colors mean, just
8 to give you an idea of the scale, every one of these
9 little boxes right here is a bin. And they are 82-1/2
feet on the square. So if you see that little bin there
are all of these little stair steps. So that gives you
some idea of scale. And so we have information from all of these thousands of points. And it is literally
14 hundreds and thousands of points in the entire survey.
Just for physical scale this unit is a mile -- roughly a
mile east/west and half a mile north/south. So that is
the proposed new unit. The existing Fallon 1-10 is
denoted with the blue box and this blue dash. This is
the existing Fallon 1-10 unit boundary. This little
black square right here is the surface location where
the Fallon 1-10 well was drilled. This black dash line
going right here is the path -- the directional path of the wellbore in the subsurface. So typically what we do
when we are drilling a directional well is we'll drill
down about 1,000 feet or so and start the kick.

1 Meaning, you are starting the direction to drill a well
2 in whatever direction we happen to be going. And then
3 at around 1,100 or 1,200 feet we'll set what is called
4 surface casing. The original casing would be the
5 conductor set to about 200 feet. And then we'll drill
6 the direction of the well. Where you see this little
7 value, the 1296 , minus 1296 , that is the actual
8 interceptive point where the Fallon 1-10 well encounters
9 Sand B. It is called a dam. And then this additional
10 part right here is the extended part of the well down to
11 a total depth of -- it is covered up. But I think it is
125,300 feet or around there. So that is where the Fallon $131-10$ well is.

14
15 the new well in the new unit, presuming that it is
16 approved, the proposed bottom of the hole location would
17 be in this area and the area where we encounter Sands A
18 and B. The surface location would actually be just to
19 the north of the Fallon 1-10 surface location in the
20 same pasture on the west side of 95 . And there would
21 also be a slight directional deviation to the west.
22 So we'll get back to these colors in a minute.
23 The red lines are some of the seismic data that I have
24 selected to demonstrate the area of the presumed gas pool. There is a north/south line which is delineated

Page 30
1 by this line. And there is a west/northwest line,
east/northeast, that runs between these two faults.
Which would be another line.
4 Q. And so those arbitrary lines those correlate with your other two exhibits?
A. Yes. Exhibit A and B are of this same
arbitrary line, the north/south line, running through
8 the proposed bottom hole location of the new proposed
well. And also the Fallon 1-10. And A is the entire
line that you see on this map. And B is just a zoomed
in version where you can see a little more detail. And
then one of the following exhibits, I guess D here, D is this west/east northeast one.
Q. So each of those -- and we can, for example, look at one of the other exhibits. Take Exhibit A for 16 example. So what that shows is essentially a vertical 17 slice of the seismic data along that line?
A. That is correct.
Q. Okay.
A. Again, going back just to refresh ourselves.

We are going to be looking at this line here. And the
area that you see on the map I selected this outline or
23 cropped this map such that you see exactly the extent
along this red line, the north to the south, running
through the presumed well and the existing well. And
Page 31

1 you'll see it also will show this little green fault to
2 the south.
THE HEARING OFFICER: Mr. Christian, for the
record, can you have him clarify that he was following
the north/south line on Exhibit C when he was referring to "this line."

MR. CHRISTIAN: Yes.
Q. (BY MR. CHRISTIAN) Dave, when you were discussing the line that extends -- the red line that
extends through both the proposed new well location and
the existing Fallon 1-10 well, that is the north/south
line?
A. That is the north/south line that is denoted as Exhibit A.
Q. And on Exhibit C that line has been labeled north at the top end of it and south at the bottom end of it ; is that right?
A. It does. And also at Mr. Thum's suggestion from improving the original exhibits after he asked for some additional information, and for additional labeling, I don't think I had made them sufficiently clear, he asked hat I label them on the exhibit itself. So you'll see up here on Exhibit C I show that 1 is the known Sand B gas pool down to the south. 2 is the presumed gas pool that is untested. And then 3 is the

Page 32
location of the 3D seismic lines and the two previous
lines. And following that number 3 I have a 3 for
following the line. And a 3 for the north/south line. So that is -- Exhibit A is along that line.
Q. Okay. And then Exhibit D is going to be along the -- is going to follow the path of the east/west line, right?
A. Exactly. The west/northwest. The east/southeast. Exhibit D follows along this path.
Q. And that second line is denoted WNW at the left end of it and ENE at the lower right end of it. Is that right?
A. Yes. That's correct. That stands for west/northwest. That is the west/northwest end of the line. And it goes traversing to the east/northeast. It should east/southeast. That is a typo in there.
Q. I'm just now realizing that.
A. I got it correct on Exhibit D here. I was probably not paying attention there.
Q. Okay. Before we move onto what I'll call the seismic slice exhibits for now. Can you just briefly explain what the different colors show on Exhibit C to your declaration?
A. I can. I think it might follow better and be more understandable if you go to the seismic at this

1 point.

2 Q. Okay. That's fine. Let's start with Exhibit
3 A.
4 THE HEARING OFFICER: Mr. Christian, can I ask
5 a question to make sure I understand.
6 MR. CHRISTIAN: Certainly.
7 THE HEARING OFFICER: So the $1,2,3$ on
8 Exhibit A, B, C, and D, they all correlate to the same
9 thing? The 1's are all 1's. The 2 are all 2's. And
10 the 3 's are all 3 's.
11 MR. CHRISTIAN: Correct.
12 THE HEARING OFFICER: Okay. So regardless
13 which map you are going to look at 3 is going to denote
143 on all three, just from different angles, whether
15 looking down or looking from the side?
16 MR. CHRISTIAN: I say that. But --
THE WITNESS: No, not exactly.
THE HEARING OFFICER: Okay.
Q. (BY MR. CHRISTIAN) Each one of the exhibits
has a legend at the top which --
A. Exactly.
Q. -- tells you what 1,2 or 3 means. On Exhibit

23 A for example, you know, 1 denotes the Fallon 1-10 well.
24 And, Dave, you can describe it for me.
25 A. Which one are you on?
Page 34
1 Q. I'm looking at Exhibit A. So I'm trying to
2 differentiate between what we were doing with Exhibit C.
3 THE HEARING OFFICER: I think that you 4 clarified. Follow the legend on each individual 5 exhibit. Not assume that $1,2,3$, means the same thing 6 on each exhibit.
7 MR. CHRISTIAN: Yes. I apologize for creating 8 that confusion.
9 THE WITNESS: With that being said, if I may, 10 if I can continue the labeling conventions here. So we 11 are on Exhibit A now. And it is a north/south 3D 12 seismic line. And it shows number 1, the existing 13 Fallon 1-10 well on the right. And this is a known 14 Sand B gas pool. And Sand A gas saturated sand. On 15 number 2 right here on the left it is the presumed Sand 16 B gas pool in the proposed new unit. I should have said 17 A and B. That is A. It should have been denoted Sand A 18 and Sand B. And then 3 proposed new unit boundaries 19 (maroon dashed lines). So these are -- that is on the 20 south side. This would be the common boundary with the 21 proposed new unit area here on the left. And then this 22 known reservoir area of Sand A and Sand B here on the 23 right. And 3, as designated by the legend up here, 24 proposed new unit boundaries (maroon dashed lines), this 25 is where this arbitrary line crosses the unit boundary

Page 35

1 on the north. And this is where it crosses the unit
2 boundary on the south.
3 And just for clarity I'm going to scroll down
4 to Exhibit C. So this is that same north/south Exhibit
5 A line that we were looking at. And that point
6 indicated on Exhibit A is where it would cross the
7 presumed -- or proposed north boundary and the proposed
8 south boundary. And, again, this is about half mile --
9 it is half mile north/south. The traversal line would
be a little longer since it cuts it obliquely. And then
east/west this is about a mile. And, again, it goes
through the proposed new well and the Fallon 1-10 well.
Q. Okay.
A. So do you want me to talk about what this shows us? Or do you just want to go by question and answer?
Q. No. First, you have given some information about what Exhibit A shows. So I want you to describe how you interpret what the -- for lack of a better term, the squiggly lines, which is the seismic -- the illustration of the seismic data, your interpretation of what those show?
A. Okay. All right. So the first thing -- this 4 is the north. This is the south end. And, again, this part of the seismic line runs through the proposed unit. Page 36

1 And then this is the existing unit in production. So
2 what we are looking at. Let's go over to the right-hand
3 side. And you see this legend. This dimension is
4 timed. And that is how we record the information as it
5 comes back. After we put a pulsive energy into the
6 earth it travels down. And it goes down. And it is
7 basically unmolested until it senses a boundary of some
8 type. Something that causes it to reflect some energy
9 back to the surface where we can then record it. So
0 some energy is reflected back to the surface. Some
energy is refracted and continues down below. And then
12 is available to be reflected off of deeper layers. And
so we record that as the time that it takes for these --
14 this is called a reflection here. Each one of these
15 events is a reflection. And the first information that
16 you get from them is structural based on the longer that
17 it takes the reflection to get back to the surface you
8 know that it is deeper just in a general sense. The
longer it takes a reflection to come back is -- and you
0 can imagine it being analogous to a submarine. It is a
21 common analogy that we use for (inaudible). If you send
22 out a ping you know what the sound, with the velocity of
3 water, the velocity of sound is in water, it goes out
4 until it hits another ship or something. You hear a
ping. And then you hear ping when it comes back. You
Page 37
can measure that time. And knowing the velocity of
2 water you can solve from a distance. If the velocity of
3 sound and water is -- it's right around 5,000 feet per
4 second. It depends on temperature and solidity and
5 things like that. But you know if you make a pulse in
6 the water, and you hear something come back two seconds
7 later, you know you have pinged something basically
85,000 feet away because it took a second to get there
9 and a second to come back.
10 Q. Okay. So just to clarify then. When you are 11 sending seismic energy down through the rock you have
12 got some knowledge of how fast the signal will travel in
13 a given kind of rock. Am I correct that there is also a
14 difference in the speed at which the signal will travel
15 depending on whether you are going through an area that
16 is saturated with water or not?
A. Yes.
Q. Or with a liquid, let's say?
A. Yes. That is one of the factors that we deal

20 with in trying to get an accurate depth prediction using
21 seismic. Because near surface it is generally a little
22 bit faster than the velocity of water. It might be
23 around 6,000 feet per second near the surface. And it
24 gradually increases to $6,100,6,200$ feet per second, as 25 an average. Getting down to $7,000,8,000$ feet per

Page 38
second. But every time you cross a little -- a
different layer of rock it can vary. If you get what is
called a marly layer. It has calcium carbonate in it.
It's like adding lime in it. Calcium carbonate. That
can be faster. But in any case that's -- those are some
of the things that we use to get our depth information.
Q. Okay. Now a couple of features that are
illustrated in the seismic data I'm going to ask you to
explain. Essentially the lines that go from the top to
the bottom. They have a couple of different features.
One is at different times they will bend one way or
another. And there are also areas that are colored
black. More or less black.
A. Yes.
Q. So can you explain what those two things mean?
A. Okay. Let me back up just a little bit and
explain what a trace is before we answer that.
Q. Sure.
A. So each one of these little squiggly lines you
see is called a trace. And that represents reflections
from a particular point in space. And each one of these represents one of these bins that you see on the map.
So, for example, when you come across here -- I counted
them up the other day. It is actually about 100 traces
on this piece of line that I showed as Exhibit A. You
Page 39

1 can sit here and count them. I think it was 98 or 99.
2 But each one of these are 82-1/2 feet apart. And so
3 this is half a mile from here to here. And I measured
4 this distance many times from where we want to drill
5 this proposed well to where the Sand B was intercepted
6 it is about 3,000 feet. So there is probably about 34
7 or 35 traces in between there. But this is an actual
8 record of the reflections from that particular point.
That little point on the chessboard. And then as you go
deeper in time those are the reflections from, as you
get deeper in that spot, if you drilled an imaginary well here, or here, or here. Or where the existing well is there. And so the first information that we can get from this, as I said, is structural. You can tell that this particular event right here is shallower because it
came in -- a reflection of it came in quicker. It is about 930, 940 milliseconds. And then here in this area it came in at about 980 milliseconds. So you can tell that this is deeper. And just as a rule of thumb it is not exactly accurate. But it gives you some analogous -- every millisecond is about four feet. Three-and-a-half to four feet. So from 900 milliseconds to a 1,000 , that is roughly 350 to 400 feet. Something like that. So this is showing about a 2,000 interval north to south. Or top to bottom. And it is about -- I Page 40
think it's a mile-and-a-half or so. $8,000,8,300$ feet, something like that, east/west.

All right. So what -- your question was what do the little wiggles mean?
Q. Yes.
A. That trace -- what it is saying is that -- and what you can see there is a lot of -- this little black thing. That is called a peak. So each trace is where the geophone -- basically you can think of it as going up or down. If there is a compressional pulse -- if you're -- this is -- we are recording the compressional pulse. The reflection from that. If it is going -- if the sound is going through something that is harder or denser it generates a little peak. That is one of these things. So you can see that this particular bed that the reflection is coming from is slightly harder than this right here. This is a trough. So each -- if I just zoomed in on that. This area on that trace that's a trough.
Q. So just for clarity. A peak is more or less a bend to the right in the trace and the trough is a bend to the left?
A. Exactly. That's the SEG convention.
Q. And now there some areas that are black or darker. Can you explain why that is?

1 A. Okay. So we have talked about what a peak is.
2 And then what a trough is. And in general -- or in
3 absolute if something -- if the sound is reflecting off
4 of something that's -- this is soft above and hard
5 below. It is going to generate a peak. And the
6 magnitude of that departure from the zero line is called
7 amplitude. So this would be a moderate aptitude where
8 you see a peak like that. When you see a really strong
peak like that that is called high amplitude. That is a
10 much stronger departure. Or a peak. It is a high
11 amplitude peak. This is high amplitude trough. And so
12 something in here is saying that I am very slow and very
13 not dense. And that is presumed to be the Sand A gas
14 reservoir. Likewise, below here, something in the Sand
15 B interval, known to be Sand B interval over here, the
16 sand is very soft here and harder down here. So
17 Exhibit -- let me zoom out a little bit. I did the same
18 line in Exhibit A. Exhibit B is just essentially the
19 central portion of Exhibit A. It is the same line. And
20 I just zoomed in on it so that we could look at that in
21 a little more detail.
Q. Okay. So now that we are on B let's describe

3 the notation that is on it so it is clear for the
record?
A. Do you want to go back to A?
Q. I had one other question about A.
A. Let's do it.
Q. Which is getting to the bottom line. Which is am I correct that part of how you identify a presumptive
sand that you want to explore is looking for strong peak and trough amplitudes?
A. Yes. Except it's trough/peak. Not a peak/ trough.
Q. Sorry.

10 A. And, again, this assumes zero phase data. I am not going to get into the phase of the data. But that is something also that you need to have to make any kind of fluid interpretations like we are talking about. And that is another reason why we purposefully drill deeper wells sometimes to come into contact the basalt layer. Because basalt is extremely hard and dense. And you know that that is going to generate a peak event. And then you got to make sure your seismic agrees that it is at the phase that you think it is at.
Q. Okay. So as a general proposition this
seismic slice, like we have in Exhibit A, is a way of
illustrating where you can identify a presumptive gas sand?
A. Yes. And this is just -- it is called an
arbitrary line because I picked it out on purpose. Not

1 arbitrarily. But that is what it is styled as. So that
2 we can demonstrate various salient features that we will
3 get to. The location of the proposed new well. And
4 then run through the existing well where we have some
5 known subsurface control. But in reality I have the
6 ability to pull up a line. I can do what is called pull
7 up a cross line. And just look at all of the cross --
8 every line. Just dit, dit, dit, dit, dit. And go
9 through -- roll through thousands of cross lines or end
0 lines that run this way. Or arbitrary lines that run a particular direction. So there is actual countless hours of interpretation that go into figuring out what the subsurface is presumed to be.
Q. One more question on Exhibit A before we move to Exhibit B. There are some other lines of different colors. There is a green line off to the right. And a purple or maroon line further off to the right. And then a reddish looking line off to the left that angles. What do those illustrate that?
A. That's what is called a fault. And what that is is -- that is where you have -- for example, up here you can see this particular reflection that I have got the gold on here. The colors on top of that. These are interpretations from me. The base data, the actual recorded process -- recorded, collected, and processed Page 44
data is the black traces. Anything you see on that --
like this is a rise. And this is my interpretation of
that. And actually the software will snap to the highest amplitude. Or you can pick it manually. Whatever.
Q. So --
A. And these are just called horizons.
Q. -- just for clarity. Where you have drawn a
line through -- where the software has drawn a line
0 through one of those amplitude events?

1 versus over here .934. So this whole horizon would be
2 shallower over here and deeper over here, etc. Over
3 here you can see the Sand B horizon as I have
4 interpreted it. It is higher here. It came in quicker
5 in time. It goes deeper. And then it comes across the
6 saddle there. So this is continuous across here. But
7 you will also see various places where there is sort of
8 an abrupt termination. And you can see that it is not
9 just that one reflection. All of these horizons have
10 essentially terminated there. Likewise over here --
11 this is an exhibit. I can't move the box. But if I
12 move this box out of the way you can see that this
13 horizon here at about 940 milliseconds is offset to
14 about -- let's see, it is probably about 930 . It is
15 offset to about 950 or 960 . So this is the same event.
16 It crosses this green fault. Now, it is lower over
17 here. So this is what is called a fault. And this
18 happens in the subsurface as the basin adjusts. In this
19 case we have a lot of intrusion of basalt sills and
20 dikes. Which I think drives some of this local
21 faulting. Imagine the sedimentary section inflating
22 from volcanic sills being in place at that depth. It
23 also -- just as a basin -- there might be some basin
24 faulting that gradually adjusts. And the sediment will
25 fail along a particular surface called a fault. And you
Page 46
1 can determine those by watching the terminations of
2 these reflections. And then mapping it. And seeing if
3 it holds together. And these faults are generally at 45
4 degree angle. If you find something a lot different
5 than that you probably have a bad data problem or it is
6 not a fault. But that is part of the interpretation
7 process is mapping shallow reflectors, middle
8 reflectors, deep reflectors, all of they way down to see
9 if your theory -- if that was a fault. If it holds
10 together or not. In this case I have done that. And
11 mapped it. And this is a fault right here. This maroon
12 line on Exhibit A. That is down to the northeast fault.
13 And this green line right here is a down to the
14 southwest fault.
15 And going back to Exhibit C. You can see
16 where the Exhibit A line was going. And we looked on
17 the north -- or the left-hand side of it you can see
18 this maroon fault right here. The little sort of tent
19 symbol means that's the downthrown side. So the
20 sediment is higher on this side. On the south side.
21 And lower on the downthrown side on the north. Likewise
22 here, this green fault, it's a down to the south fault.
23 You see a little tent symbol on there. The northern
24 part of the fault is high. And the southern part is
25 low. And we are just going to look at those. Again,
Page 47

1 line A. Exhibit A. And that was where we are mapping
2 Sand B. This is the green fault on the south. And you
3 can see this reflection here -- starting up here this
4 reflection has been faulted to there. This reflection
5 has been faulted to there. And this reflection has been
6 faulted to there. And this reflection been faulted to
7 there. And it continuous. And the fault takes a bend 8 right there. Likewise, on the north end, you don't have 9 a whole lot of lines to see here. But this maroon fault
10 is down to the north. And this is the lowest side. And
1 this is the highest side. So as much as I would have
12 liked to going back to Exhibit C, as much as I would
13 have liked to have disconnected these faults, the green
and the maroon down, and I spent a lot of time trying to
resolve this fault situation in here, they don't. As an 16 explorationist you like to have one very easy
17 explanation. And one continuous fault would be that
explanation. But we don't have that. In this case you
9 can see you're losing structure to the northwest/
northwest. And you also lose sand. You lose the
amplitude. And that is what the state --Mr. Thum asked
me to provide additional information showing this
west/northwest to east/southeast traverse.
Q. Can we move onto Exhibit B.

THE COURT REPORTER: Before we do that can we Page 48

take a break?

THE HEARING OFFICER: Sure.
(Recess.)
Q. (BY MR. CHRISTIAN) Dave, I think we left off discussing Exhibit A to your declaration. Which for the record is Exhibit SR-01 at page 15. Before we go on.
For clarity of the record when you are using the curser
8 on your screen to identify something can you identify
9 where on the page you are in terms of direction and
location so that what you are doing will track in the
transcript?
A. Yes, I can.
Q. Just as a summary of questions before we move onto Exhibit B. Within the dashed red lines on Exhibit
A to your declaration, which is the proposed unit area
6 north and south boundaries, the two what you called
horizons that are described within in it, are those what you have called presumed Sands A and B inside the unit?
A. Yes.
Q. Okay. And is it -- well, I will get the the
ultimate question in a bit. Let's move onto Exhibit B
to your declaration. Which is page 16 of Exhibit SR-01.
I think you described earlier that this is a zoomed in
view of the same information on Exhibit A. But within the boundary unit. Is that correct?

Hearing June 13, 2024

1 A. It is.	1 right side of Exhibit B?
2 Q. Actually, it shows the south unit boundary.	2 A. Exactly.
3 That dashed red line down the middle. And then to the	3 Q. So just for clarity that orange or gold well
4 right of that is the Fallon 1-10 well. And the sand	$4 \log$ line, you have taken information from a well log and
5 that it intercepts. Right	5 overlaid it on a picture of seismic information; is that
6 A. Y	6 right?
Then to the left of the dashed red line, th	7 A. I didn't overlay it. I just asked my work
8 would be from the south boundary of the proposed un	8 station to display that. You can ask the software to
9 configuration toward the north. Just summarize for m	9 the display a particular log curve you want and what the
10 what that illustrates?	10 physical readings are. And this is just a good example
11 A. Okay. So the -- one of the sort of principle	11 of one that is relatively determined to
12 of science that we use in exploration is work from the	12 Q. Okay
13 known to the unknown. And the simple to the complex.	13 A. So there is some manipulation on my part.
14 So from the known, what is known on this, we know that	14 It's exactly scaled and raised in units. And you can
15 this is shallower. And this is deeper. And by	15 see it on the logs that will be I assume shown later.
16 shallower I'm pointing to the top of the exhibit. And	16 Q. So the area where it intersects the pink,
17 deeper I'm pointing to the bottom of the exhibit. We	17 which is Sand B, on the right side of Exhibit B, the
18 know that we have good quality 3D -- very excellent	18 gold line jumps quite a bit further to the left. Why is
19 quality 3D data in this particular area. And we also	19 that?
20 drilled a Fallon 1-10 well here	20 A. It jumps further to the left because it has
21 Q. Which is on the right side of the exhibit	21 less gamma ray radiation. That means there is less clay
22 A. Exactly. And it is a directional well. And	22 minerals. Less potassium basically. And so it
23 you can see where it was coming through. I notice that	23 showing that this is -- where my curser is -- I'm
24 had Mr. Thum filed some log sections which I'm lookin 25 forward to hearing the testimony there. It is basically	24 pointing to where it says the top of Sand B. 25 Q. Yes.
Page 50	Page 52
1 expanded versions. And I'm kind of kicking myself. I	1 A. And then down you can see that it is still
2 probably should have put that in. And I didn't.	2 departing from the zero line, which is where th
3 I'm glad he did. But in any case these are what i	3 wellbore is. And then it comes back in below where th
4 called log curves.	4 arrow is. As Mr. Thum's exhibits will show there is
5 Q. Well, let me clarify. What you are referring	5 portion of the sand below the gas/water contact that is
6 to is sort of a jagged orange line that follows along	6 water saturated. And you still have sand down there.
7 the course of the Fallon 1-10 wellbore; is that right?	7 But the event that is most obvious and apparent on the
8 A. Yes. I'm referring to that. This jagged	8 seismic data here is the boundary between the gas
9 looking gold/orange line is what is called the gamma	9 saturated sand above -- and I'm basically moving my
10 ray. And it is showing the values in the wellbore	10 curser where I have a pink area described, or a light
11 recorded on a per foot basis all of the way down. And	11 red, and the peak, the underlying peak, which is an
12 the utility of this is where you have the lower gamma	12 indication -- the seismic is saying I'm getting a strong
13 ray readings. And the scale on this would be low on the	13 positive reflection here from something that is
14 left. Higher on the right. Higher gamma ray readings	14 relatively flat and is higher density and higher
15 indicate clay stone or shale typically. Because of the	15 velocity below than above. And above that where I have
16 potassium in the clay minerals. Lower gamma ray	16 the Sand B annotation you can see a large trough
17 readings indicate a lack of radioactive elements. And	17 developed. And that says -- the seismic is saying I
18 more things that are nonradioactive like quartz. So you	18 have a lower velocity, a lower density event in here.
19 can see this departure on the gamma ray here where I	19 So that is what I map that horizon on. You can see
20 have called it Sand A. And Mr. Thum's ex	20 where I am starting at the right-hand edge of the
21 show that in more detail. And then this large departure	21 seismic data and I'm mapping that trough down and
22 down here is Sand B. This is the large thick Sand B	22 through the wellbore and then continuing down. And in
23 unit.	23 that trough where I am -- the red trough actually
24 Q. And you are referring to part of the orange	24 intersects the top of the blue horizon. That is now
25 line that intersects the area shaded in pink on the	25 actually the top of Sand B. And so what happens is you
51	Page 53

14 (Pages 50-53)

1 actually get a polarity reversal with these sands. When
2 you put gas in when they are full of water they are a
3 weak/positive reflection. Where I'm showing my curser
4 right now where the blue line is. And then continuing
5 to the north. All of a sudden you develop a trough on
6 top of it. And the presumption here is -- the
interpretation is that at this point it becomes gas
saturated. Not just because of the amplitude and
presence of a low velocity interval, or presumed low
10 velocity interval, presumed gas sand, which would be
11 represented by this low velocity interval, but also
12 coming out of it the strong peak underneath. You
13 always try to take as much of this information and
14 incorporating them together as possible. So this trough
15 here, with a trough on top, and a peak on the bottom, is
16 very indicative oftentimes, not exclusively, but
17 oftentimes, by the gas sand. And that is what we tested
18 over here, this trough on top of this peak,
19 successfully. In the pre-drilling we predicted that we
20 would have gas in Sand B and it will be thick. And also
21 that we would have gas in Sand A and would not be as
thick. And so we --
Q. And you are discussing right now what you encountered in the Fallon 1-10 well?
A. Yes. And then by analogy -- I apologize if I

Page 54
have gone too much into the weeds with people. But I do
want to explain the basis. We didn't just randomly
select this unit. It is very deliberately determined.
And the interpretation and the amount of expense that we
have put into acquiring good 3D data, and the amount of
time I have spent interpreting it and incorporating it
with other known information in the basin, allows us I
think to be as precise as we can. Which is still not
that precise when you get down to it. It is still -- we
are listening to the the ground vibrate. So I try to
push the interpretation as far as I can. But we still
have to deal with the limits of resolution of the
seismic method. And so I will try to point those out as we go along.
Q. Okay. As --
A. Go head.
Q. I was going to say to summarize what you have just been talking about am I correct that you interpret, based on how you have notated on Exhibit B, you interpret the horizon line at the top to be the top of the sand. And the black peak event below to be the -where the gas/water contact occurs. Is that right?
A. Yes. It can be -- in various places it would go back to Sand A -- or, excuse me, Exhibit A. In the region that I am pointing at now.

1 Q. Right.
2 A. Where the Fallon 1-10 well is. This is most
3 likely a gas/water contact that we are imaging. Because
4 it is a very strong trough/peak combination. A very
5 strong peak. And it is relatively flat. Going to the
6 right, where you can see that the event has some
7 structural character, it is climbing, that is -- my
8 interpretation that is the base of the sand. And it is
9 also a lesser amplitude reflection. Going from a gas
0 sand to clay stone is not as strong of a contrast as
going from a gas sand to a water sand. That is a very
dramatic reflection. So the interpretation here -- it's
basically -- it is a combination horizon. Here is the
gas/water contact presumed and confirmed by the
geophysical logs running the well. And I'm outlining
with my curser this high amplitude peak in the area of
the Fallon 1-10 to the south of that where the event
reflection climbs. It is a lower amplitude peak event.
And that would be a base sand reflection.
Q. Okay. Just for clarity. Can you just real briefly describe what we mean when we say gas/water contact?
A. Certainly. So if you had a jar, a big jar, and you put marbles in it, all the same size, more or less, and you filled it up about halfway with water, and

Page 56
1 put a big stopper in it, the air would be on top and the
2 water would be at a flat level. And that would be the
3 air/water interface. Well, the principles of physics
4 remain the same in the subsurface as they do on the
5 surface. And so that is what happens in a gas reservoir
6 at depth. If there is a thick sand that is water
7 bearing. The gas will form a -- essentially will keep
8 accumulating into the track and pushing the water out
9 and it will form a flat surface called a gas/water
contact. And if you have a sand that is thick enough
sometimes you can image that with seismic. And we think
that that is what we are imaging here. And now I have
moved to Exhibit B. And I say that because we have
drilled this well. We have logged it. We have found --
I don't remember exactly. About 90 feet or so or 100
feet of gas on water. The lower part of the sand is
water bearing. And Mr. Thum's exhibits will show a
geophysical \log requiring the wellbore. But what was
predictive using the seismic actually occurring is the prevailing truth in the ground. That there is a gas accumulation on top of a water bearing lower portion of the sand. And it does generate a strong reflection.
Q. So based on the seismic data that you have
developed, and your experience in the Fallon 1-10 well,
you expected to encounter the same condition in presumed

1 Sand B within the unit area?
2 A. I do with some qualifications. Again, the
3 timed information is useful to determine structure and
4 whatnot. And depth. Presumed depth. And here you can
5 see that the gas/water contact is proved -- proven in
6 the well is in 1388 subsea. I don't remember the
7 measured depth. And recall that we are -- the surface
8 elevation here is about 2,150 feet roughly. Plus the
91,388 . You are looking at whatever that math is.
10 3,400, 3,500 feet, 3,600 feet vertical. But the
11 measured depth is going to be quite a bit more.
12 Q. I'm going to stop you for just a second so we
13 can have clarity in the record for the hearing officer's
14 benefit. So when we have a number that is subsea. That
15 is a number that is measured -- the number below sea 16 level; right?
17 A. Below sea level; right.
18 Q. When we have a measured depth we are talking
19 about the distance from the top of the well through the
20 wellbore to whatever the point is you are measuring;
21 right?
22 A. Exactly.
23 Q. Which in the case of the Fallon 1-10 well, for 24 example, is not vertical because it is a directional 25 drilled well; right?

Page 58
1 A. Correct.
2 Q. And then if you are referring to a true
3 vertical depth that is the distance from the ground
4 vertically to the point you are measuring?
5 A. Exactly.
6 Q. All right. Please go on.
7 A. Okay. So the point I wanted to make. You
8 asked is this area -- and I'm pointing to the area that
9 I have covered light red -- is this area similar to the
10 unknown area where we presume a gas pool to exist. And
11 my answer is yes, with qualifications. And the
12 similarities are it has the same type of amplitude in
13 the trough event above. And peak event below. Which
14 are consistent with a gas bearing sand. As the known
15 gas pool on the adjacent unit -- existing unit. The
16 differences are -- I think that this gas/water contact,
17 which is known to be at 1388 subsea, it is coming in --
18 if you look at the time annotations on the side it is
19 coming in at about 1.209 milliseconds. And as you go to
20 the north you can see that there is sort of a little
21 kick up. And then you're climbing in structure to the
22 north. You cross the unit boundary. You just have a
23 weak, low amplitude peak. And then all of a sudden you
24 develop this trough amplitude above it. And a strong
25 peak amplitude below it. But this peak at the area of Page 59

1 the well is at a higher time -- or a lower time, i.e.,
2 shallower depth.
Q. When you refer to the well you mean the
proposed well in the new unit?
A. Yes. Proposed new unit well. And I have put

6 a little box here. So the time of that peak event,
7 which could be a gas/water contact, or a basin sand
8 event, based on the strength of it I think it may be a gas/water contact at 1.186 seconds. So you can see that is 23 milliseconds higher. And using the time/depth
information we have gathered through multiple wells in
the area the predicted gas water contact would be 1294
subsea. Approximately 100 feet higher than here. And I
make that point just to demonstrate another point to
suggest this is not a common accumulation. It is
probably a -- I presume it to be a gas/sand accumulation
in Sand B. But at a higher elevation. And with a
different gas/water contact. And this pool, presumed
pool, unknown, than the known pool in the Fallon 1-10
existing unit to the south. That is what the seismic information is telling us.
Q. And have you engaged in the same interpretation with respect to Sand A above Sand B?
A. Correct. I didn't want to make -- I have already made these exhibits somewhat complicated and I

Page 60
1 didn't want to make it any more. My thesis would be
2 that this area, by amplitude, with a strong peak
3 underneath, high amplitude trough, and I'm pointing to
4 Exhibit B, under the proposed unit well where it says
5 Sand A on the left and minus 1139. That would be the
6 predicted subsurface of top of Sand A. There is a big
7 trough there. And underneath of that is a strong peak.
8 I would interpret this to be Sand A gas charge. And
9 where you lose that trough-peak amplitude coming down
the structure it becomes unproductive at some point. It
is known to be productive over here at the Fallon 1-10.
It is about 12 feet. And, likewise, going to -- so that
is the north/south line looking at the west/northwest to east/northeast line.
Q. And you are looking at Exhibit C when you say that?
A. Yes. I'm sorry. I'm looking at Exhibit C.

And I am moving my curser along the west/northwest to
east/southeast line with a 3 on either end of it. It
runs from the northwest corner of the proposed unit to
the southeast corner of the proposed unit. And my
annotation is incorrect. It should say east/southeast.
ESE. Not ENE. But that is the line I'm going to be looking at as Exhibit D. That is this one here.
Q. Okay. So Exhibit D is a different slice of

Page 61

1 the seismic information through the proposed unit area.
2 Essentially not exactly at a right angle to the other
3 Exhibit A. But it is at a different angle from it going
4 through the unit at a different direction; right?
5 A. Yes.
6 Q. Okay. Does it contain the same illustrations
7 about, for example, the proposed unit boundary? In this
8 case it would be the east and west boundaries; right?
9 A. Yes. And so looking at Exhibit D. There is a
10 legend at the top that says where it is. It is a
11 west/northwest to east/southeast 3D seismic line showing
12 number 1 -- these are the reflections that represent the
13 presumed Sand A gas pool on top of Sand B. And that
14 trough-peak pair. And the Sand B trough-peak pair
15 representing that Sand B presumed accumulation. And
16 then number 2, the annotation number 2, proposed new
17 unit boundaries displayed on the seismic line (maroon
18 dash). And I'm using my curser up and down showing the
19 one on the east/southeast on the right side annotated by
20 number 2 within the unit boundary. And then on the left
21 the unit boundary and the maroon dash also annotated by
22 a 2 . And at the same point here is the amplitude of the
23 trough and the peak for A. You can see it is clearly
24 contained within the unit boundaries. And likewise for
25 the presumed -- or the reflection representing the
Page 62
1 presumed Sand B gas pool is contained -- and I'm
2 pointing to the middle of Exhibit D. And underneath the
3 number 1. The proposed new unit well is a vertical
4 black line that the 1 is on top of. And on the top,
5 just to the left of the line, you see Sand A annotated.
6 And to the right is a data value minus 1139 subsea. And
7 there is a trough-peak pair there that I'm interpreting
8 to represent gas in Sand A. And following the Sand A
9 event to the left or west/northwest it dies out.
10 Following it past the proposed new unit well and to the
11 east the amplitude of the trough event dies out before
12 you get to the unit boundary. And I have haven't
13 interpreted it -- or I have interpret it, but it is not
14 turned on. The peak event underneath -- if you turn on
15 all horizons you can't see anything. I don't have the
16 horizon turned on. But you can see the peak event as
17 strong amplitude dying out to a weak amplitude in either
18 direction. And likewise below that, still under the
19 proposed new unit well, you can see where the Sand B
20 reflection is indicated. And the GW, representing the
21 presumed gas/water, relatively flat. And you can see
22 that dying out to the west and to the east. All
23 consistent and staying within the unit boundaries. And
24 my interpretation is -- when you look at just one line
25 you might convince yourself of several of many things. Page 63

1 When you look at countless lines, and look at every one
2 of these traces, you develop a common interpretation.
3 And what I see consistently is this termination of
4 amplitude of the trough-peak event representing the
5 presumed Sand B gas pool along a particular pattern.
6 And that is what I have indicated -- going back to
7 Exhibit C. This black dash line. Sand B Termination
8 (Black Dash). It is a very linear feature when you look
9 at the rest of the 3D line. You recall that we have 300
10 square miles of 3D seismic out here. We are looking at
1 about maybe one mile square of data right now. But this
consistent termination of amplitude is mappable. And it
does add complexity to my proposed trapping mechanism.
And that to trap this presumed gas pool I'm relying on
15 this maroon fault here. And I can't even map an event
16 on the northeast side. There is no amplitude out here.
And then there is another fault here. So I feel good
18 about the trap along that maroon fault. And as I said I
would have loved if the interpretation showed that this
was one fault. But it doesn't. It clearly doesn't.
And you can look at countless lines through here and you
can see that this maroon fault is separate from this
green fault. So the amplitude does terminate in here.
Q. I just want to make sure for clarity. We are
talking about Exhibit C to your declaration which is
Page 64
1 page 17 on SR-01.
A. Yes.
Q. When you say the maroon fault you are
referring to the dark faulted area that sort of trends
from the northwest to the southeast kind of mostly in
the east half of the proposed unit area; right?
A. Yes.

8 Q. Okay. And then you have described this green
9 fault. Which is to the northwest that has sort of a
fork shape. Those are two different faults.
A. Yes. There is a little splay on the south end.
Q. You spoke about a trapping mechanism. First just generally explain what you mean when you say a trap?
A. Okay. So let's go back to Exhibit B. A trap is anything that impedes the gas from escaping from a reservoir. And a reservoir or a pool is, in this basin, typically in the sandstone. Going back to the marble analogy. In the pore space between the marbles, which would represent our sand, gas can accumulate as it is generated from deeper organic material. And it will generally escape unless it is trapped somehow. And if it is trapped in a porous medium, like a sandstone, and that could be structural like here, this is basically a

Page 65

Hearing June 13, 2024

1 little what we call a saddle or a little low spot. It
2 gets higher more on the side of the structure here. So
3 there is impermeable clay stones above that prevent the
4 gas from escaping. In this case I think, if we are
5 proposing a new unit well, part of the trap is this
6 maroon fault here. It doesn't show you all of the
7 evidence. But there is a large amount of evidence for
8 the existence of this maroon fault.
9 Q. And you are pointing to the left side of 10 Exhibit B?
11 A. Yes. I'm on Exhibit B.
12 Q. On the left side that is where you are
13 identifying the fault? It kind of dies into the label
14 proposed new unit well; right?
15 A. Yes.
16 Q. All right. So your view is that that fault 17 acts as a trap on the north -- to the north?
18 A. Yes. Again going back to the exhibit. So 19 here you can see a clear displacement of this reflector.
20 And this reflector down to here. And this reflector
21 comes down here. Going back to Exhibit C. We were
22 looking at this fault. Which is down to the north. And
23 I'm pointing to the maroon colored fault that runs along
24 the northern portion of the proposed unit. And it is
25 very clear, but it does what is called dying out. Which
Page 66
1 means it stops being a fault and there is no offset on
2 reflections above or below beyond this point. But the
3 salient point -- and that could be a leak for this trap.
4 But the salient point is the amplitude also terminates
5 there. And it is very close to my Sand B determination
6 that I can map on the eastern part of this feature and
7 well to the southeast. That was also demonstrated with
8 Exhibit D where you can see the -- this map has the
9 amplitude of -- and you asked me to explain this
10 earlier, and this is probably an appropriate time, what
11 these colors mean. So over here on the right is the
12 color bar scale. And zero on the low end is dark blue
13 going to the lighter blues. And then the hot colors is
14 the red. And these are 3,000 amplitude units on the
15 high end. So this would be a strong amplitude. Or a
16 weak amplitude. The higher the number and the hotter
17 the color the stronger the amplitude. So what you see
18 is a large area of high amplitude. And I am mapping the
19 amplitude of the peak. And I have denoted that just
20 generally with this large outline as being the
21 approximate boundaries of the presumed Sand B gas pool
22 (orange dash) based on amplitude strength of the peak.
23 And specifically looking at an example of that. Let's
24 look at the Exhibit D. The west/northeast to
25 east/southeast line. And both of the lines by the way
Page 67

1 intersect and cross at the presumed -- or the proposed
2 bottom of the hole location. But lets look at that
3 amplitude character along that line of the Sand B event.
4 We'll just go down to that.
Q. So now we are looking at Exhibit D, which is 6 page 18 of Exhibit SR-01.
A. Yes. I'm starting in the middle of the

8 exhibit where the proposed new unit well is. It is
9 denoted by a black line going down through Sand A and to
0 the Sand B reflection. And we are looking at the peak
of it where you see a GW. Presumed gas/water. You can
see that -- if you blew up on that you can see that
these are high amplitude trough. High amplitude peak.
4 And the peak event gradually just fades out. And
then it -- it is still there but very weak.
Q. And you have indicated going toward the west; correct?
A. Going towards the west/northwest; correct.
Q. So is it -- am I correct that the green line
below it, and the maroon line above it, are correlated
with the two faults that you have shown on Exhibit C?
A. They are.
Q. Okay. So is it your interpretation that the combination of the two faults, and the decreasing amplitude in between them, that combination of things is Page 68

1 what acts as a trap to the north and the northwest?
A. Yes. And I'm going go back to Exhibit C. So 3 the lack of amplitude in this region to me suggests that 4 there is no strong -- there is no strong reflectivity in 5 there. Either a trough or a peak. If you looked at the 6 amplitude of the trough event and the peak event they
7 are strong in this area where I have drawn the orange
8 outline. And it just fades out. And so my
9 interpretation is that the sand essentially pinches out.
0 And that is somewhat confirmed by going back to Exhibit
D. If you look at the character of this reflection.

Where this trough just sort of loses amplitude and then goes into a weak peak. The sand terminates. This is 4 the exact same type of response that we get a troughpeak pair terminating into a weak peak at the edge of 6 the sand when we go -- when we map the edge of the sand to the south. And that is supported by the fact that -8 at pre-drill we said we are going to have a thick Sand 9 B. There was -- Bridge had drilled a well called May in
0 Section 13 a couple of miles to the east of here. It
1 had no sand in the B section. And we propose this is
the trap for the Fallon 1-10. This stratographic
termination. And we were successful in finding A and B.
4 And both A and B have a stratographic termination to the east. And I think that is because there are

1 probably fluvial sands that run similar to the --
2 THE COURT REPORTER: Slow down again. You 3 tend to get going.
4 THE WITNESS: Sorry. The remark I was making
5 is that the -- on Exhibit D, the termination of this
6 trough-peak pair, where I am pointing, to me indicates
7 the stratographic termination, or we call it a pinch
8 out, of Sand B. So this would be a stratographic trap.
9 And I see this same seismic character elsewhere in the
10 basin in the local area. And it is documented and
11 proven by the lack of Sand B in wells to the east. And
12 the lack of Sand A in the wells to the east. Small
13 samples size. But nonetheless six or seven wells.
14 Q. (BY MR. CHRISTIAN) Okay. If you can go back 15 to your Exhibit C for me. So we have discussed your
16 views on the trapping mechanisms to the north and
17 northeast and to the northwest. And I think you had
18 started referring to your interpretation of how it
19 worked to the south. Can you expand on that?
20 A. Yes. So I think if we go Exhibit A. This
21 north/south line. What you'll see is that there is a
22 high area to the south in the existing Fallon 1-10 unit
23 and well. And then there is a saddle or a low area in
24 this area. I am basically running my curser near the
25 common boundary between the proposed new unit and the
Page 70
1 north edge of the existing Fallon 1-10 unit. And then
2 you come back up as you go north onto a separate
3 structure. So let's look at that on Exhibit A.
$4 \quad$ Q. So when you are referring to a saddle you mean 5 an area -- a lower area?
6 A. A lower area; right. If you could imagine
7 this as two peaks. Here is a peak. And I'm pointing to
8 the structure that the Fallon 1-10 is on. And here is a
9 neighboring peak where the proposed unit well is. And
10 there is a low area in between. We call that a saddle.
11 And so what you see is that the amplitude -- I'm now
12 pointing to the area of the proposed new unit well. And
13 you can see that the amplitude of the trough is present,
14 the trough-peak pair, at the proposed unit well. And
15 then going to the south the amplitude of the peak
16 diminishes dramatically, as does the amplitude of the
17 trough, until you get to the unit boundary. And
18 likewise the amplitude of the trough and the peak
19 associated with Sand A also diminishes to the south. So
20 the trapping mechanism to the south, and going back to
21 Exhibit C, it is low to the south in this area. And it
22 is also low to the southwest. The structure dips away
23 from this -- from the green fault and maroon fault to
24 the southwest. And you can see that there is -- there
25 is lot of noise to the data. You can't literally
Page 71

1 interpret every little bubble and wiggle. But when you
2 look at the mapping, the trough, and the peak, and
3 various other attributes, we use what is called AVO.
4 Which stands for amplitude versus offset. It is another
5 way of looking at the seismic data. It helps in
6 determining whether you think gas may be present or not
7 without getting into the details of how we do it.
Q. Okay. I think we have -- you'll correct me if

9 I'm wrong. I think we have discussed it a fair amount
of length your interpretation of the data to reach
conclusions about the presence of hydrocarbons. And the
trapping mechanisms with respect to Sands A and B in the
proposed unit area. The last thing I want to talk about is you indicated that there is -- there are some presumed sands at greater depth that you would wish to explore. Can you, let's say, on Exhibit A, identify what you are talking about?
A. All right. On Exhibit A, under the number 1 where it says Fallon 1-10 existing well, starting just under that label, and going down, you cross where I have identified the reflection associated with Sand A and Sand B. We discussed those at great length. Underneath that, continuing deeper, you see the curve. That sort of jagged looking gold curve again is the gamma ray. And the regions that I'm pointing to there is a lot of

Page 72
1 character to the gamma ray curve. There is a lot of
2 sands down here. And when we drilled the Fallon 1-10 we
3 specifically wanted to sample this and be able to test
4 it and run our higher resolution geophysical logs across
5 it and see what's the quality of these sands. Is there
6 good porosity. Are they thick sands. Are they thin.
7 Those sorts of thing. Is there any gas there. Is there
8 any oil there. And we also wanted to drill deeper to
9 sample the slope, which is deeper than this arbitrary
line shows, to get a time/depth pair. Which we did.
But we found some gas shows. And a gas show is a small
12 amount of gas not commercial. But when you are drilling
a well you get some gas coming out of the rock as you
are drilling it. We were able to correlate those gas --
(Screen froze.)
(Recess.)
THE HEARING OFFICER: We are back on the record.
Q. (BY MR. CHRISTIAN) Dave, do I have you?
A. Yes.
Q. I think where we left off I had asked you
about your interpretation of the -- what I'll call the
secondary sands at greater depth below Sands A and B.
A. Yes.
Q. And you had begun discussing those. I think

Page 73

1 you were looking at Exhibit A. You had discussed
2 encountering them in the Fallon 1-10 well, and gas
3 shows, and the gamma log indication that is shown on
4 Exhibit A. And I think that is where we left off. And
5 I think you had said that you were seeing the same
6 trough-peak indications within the unit boundary. Do I
7 have that right?
8 A. Are you talking about below A and B?
9 Q. Yes.
10 A. Okay. Yeah, to my recollection, I'm not sure 11 where I lost you all. And where I froze up on the 12 internet on this end. But I recollect your question was 13 why do you want to drill below them. And I was making 14 the point that that is what we did with the Fallon 1-10 15 as part of our exploration strategy in this basin to 16 learn more. And we think we are good at finding gas in 17 the sands. But, you know, practically oil in a sand is, 18 to the seismic method, not really apparent in terms of 19 an amplitude anomaly. You might be able to map a
20 structural trap. But you may get some sort of amplitude
21 anomaly. So to be thorough and to try to minimize waste
22 and maximize economic efficiency a lot of times we like
23 to drill wells deeper because the incremental cost is
24 not that high. And see what is happening below us. And
25 sample those sands and learn more about the whole
Page 74
1 geology of the basin. We did that with the Fallon 1-10.
2 And we got some gas shows. I'm pointing at Exhibit A in
3 an area around 1.3 seconds. And you can see the gamma
4 ray curve has got a lot of character to it. That is the
Sand B interval. We had some gas shows here to the east
6 of this area extending and correlating with this area of
mapping to the east. The area gets structurally higher.
We have some amplitude anomalies there where we proposed
a new unit, the unit was granted, and we drilled a new
10 well, Fallon 1-11, which was successful, and is
11 currently producing gas. And similarly we would propose
12 if this new unit is granted, and the drilling permit is
13 approved, we would propose to drill some distance below
14 Sands A and B to test the deeper stratographic section.
Q. The trapping mechanisms that you described

16 with respect to Sands A and B , do you generally
17 interpret them to apply to the deeper sands that you
18 might encounter?
19 A. Yes. They do the -- the maroon fault and the
20 green fault do continue deeper with depth and could be
21 proposed trapping elements.
22 Q. And likewise do you have the same saddle
23 elements to the south?
24 A. Yes. And looking at Exhibit A you can see the
25 same structural saddle as evident in the deeper section.
Page 75

1 And it is south of the proposed unit boundary of the new 2 unit.
3
4 just engaged in over the last hour-and-a-half or so, do
5 you have an opinion about whether the proposed unit area
6 appropriately describes, at least for Sands A and B, an
7 area that would be economically and efficiently drained
8 by one well?
A. I do. I think that it is the most logical
unit to cover the presumed gas pool comprised of Sand A
and B, and cover it, and be economical and efficient to
develop that.
Q. And based on your experience with exploring
and producing those sands in other wells, and the
information you have described here, do you believe that
the proposed unit area will aid in the orderly
development of the pool as a whole?
MR. PIOTROWSKI: Objection. Calls for a legal conclusion.

THE HEARING OFFICER: Do you have a response to that objection?

MR. CHRISTIAN: It's a factual opinion.
MR. PIOTROWSKI: I'm not aware of factual opinions.

THE HEARING OFFICER: Can you read the Page 76

1 question back to me.
(Record read back.)
THE HEARING OFFICER: I'm going to allow it. If you can go ahead and answer the question, Mr. Smith. THE WITNESS: I believe it will. If I may refer to Exhibit C. Our proposed unit again is denoted
with the maroon dash as a 320 acre unit roughly. I'm
not exact sure of the exact section size here. But it
9 is about 320 . You can see that the amplitude is very
clearly centered on both of those quarter sessions. And
in terms of, as a non-legal person, how it would be
consistent with orderly development of the pool it is
immediately adjacent to the existing Fallon 1-10 unit.
And the people involved in the Fallon 1-10 unit, the
mineral owners, are receiving revenues from Sand B
production currently. In the future they will receive
revenues from Sand A when we have depleted the deeper
Sand B and cover up the hole and complete at Sand A.
Likewise, the mineral owners encompassed within the
proposed new unit would be receiving revenue from their
share of the production from the -- if they are there --
Sand B and Sand A pool. And there is no gaps. There is
nobody left out. It is all -- it is seamless in terms
of adjacent -- the units are adjacent to each other.
Q. (BY MR. CHRISTIAN) One of the --

A. So the answer would be yes. Q. Okay. The last question. One of the objectors, Ms. Oltman, are you familiar with where her property lies adjacent to the unit? A. From talking with you on the phone -- I'm using Exhibit C. My understanding is that her land, just to be clear, is not within the outlines of the proposed unit, but would be adjacent. And somewhere adjacent on the east boundary towards the north side about where that purple fault is moving through. Am I correct in saying it? Or is it further north? Q. Well, let's assume it is right where you indicated. If that's the case, based on your interpretation of the data that you have developed, would her minerals be impacted by the proposed unit area? A. Her minerals would not be impacted. I believe that commercial Sand A and B reserves, if present, would be trapped on the south side of this maroon fault that I'm -- maroon/brown fault I'm running my curser on. It runs near the northern boundary of the presumed unit, or proposed unit, and curves around to the south. And her -- if her acreage is where I am moving my curser, outside of the proposed unit, and adjacent to it, her minerals would be across at least one fault and possibly Page 78 two and not impacted by any development for a presumed well. Or assumed well. MR. CHRISTIAN: That is all the questions I have. THE HEARING OFFICER: Thank you. Mr. Piotrowski, do you have questions for this witness? MR. PIOTROWSKI: I do. EXAMINATION QUESTIONS BY MR. PIOTROWSKI: Q. Mr. Smith, you have Exhibit C of your declaration on the screen. That is a perfect place to start. So you said with respect to that maroon fault. This designation on Exhibit C. Your curser is on it there. It is your opinion that that fault acts as a trap for both Sands A and B? This area? A. Yes. Q. And the areas -- so to the northeast of that fault -- to your knowledge -- to the best estimate you can make on the data we have for your interpretation there was no hydrocarbons associated -- MR. COURT REPORTER: I'm sorry. I lost you. There was no what? Q. (BY MR. PIOTROWSKI) Let me try it again. Mr. Smith, is it correct that you believe that to the	north and east generally of the brown marked fault on Exhibit C there are no hydrocarbons at the depth of Sands A and B? A. I am not mapping any amplitudes there that would be consistent with Sand A or B. Q. Okay. And if you would please go up to Exhibit A. So looking at Exhibit A. You explained this is -- in this graph here, this image here, the numbers in the right-hand column running from .900 to about 1.420 roughly. That is milliseconds; right? A. It's actually expressed in seconds. 1.4 seconds. But, yes, if you look at the (inaudible) . 000 that would be milliseconds; correct. Q. Okay. This -- I'm not sure whether to call this a chart or graph or what I call this thing. A. It is called an arbitrary seismic line. So it is excised from the seismic volume. Q. And it looks like this goes down to 1.425 seconds; is that right? A. Yes. Q. And could you tell me what depth that is roughly? A. Well, from the Fallon 1-10 wellbore you can see where I have actually entered what is called a top for Sand A and Sand B. And then those are the subsea values. You would add about 2,150 feet as the approximate surface location. And then going down further I have got another top at 1,932 at about 1.33 seconds. Plus 2,150 . That is 4,000 feet. And you have about another 100 milliseconds of data. So it would be about 4,400 feet roughly to the bottom of what you can see. Q. Okay. And did I understand your testimony correctly that at the Fallon 1-10 well you were able to make contact with some salt layer? A. It may have sounded like salt. But what I said is basalt. B-a-s-a-l-t. Basalt. Q. Right. And Fallon 1-10 drilled down to that basalt layer? A. Down to it and through it. Or at least into it. Yes. Q. And how far down ultimately did that well reach? Do you know? A. About, I believe, 5,300, 5,400, 5,500. Q. Okay. A. If that line wasn't on it -- I could look at my work station and tell you exactly. It was to 5,442 . Q. Okay. Now back to -- A. And basalt is at 5,306 measure depth. So it looks like we just drilled into it.

21 (Pages 78-81)

Hearing June 13, 2024

22 (Pages $82-85$)

Hearing June 13, 2024

23 (Pages 86-89)

1 your question?	1 A. Yes.
2 Q. It does. One of things we are trying to	2 Q. And that is 320 acres; correct?
3 accomplish here is translating your field of geology, i	3 A. Y
4 particular, seismic survey --	4 Q. And are you aware, sir, that the statute
5 THE COURT REPORTER: Hold on. Mr. Piotrowski,	5 presumes 640 acres in unit
6 I am hav	6 A. I am. And I'm also aware it provides for
7	
8 trying to do here, Mr. S	8 Q. Sir, I simply asked if you were aware that it
9 field and my field. One of the standards that we often	9 presumes 640 acre size. I didn't ask for commentary.
10	
11 most lay people, is we talk about whether something is	11 Q. Now, are you aware that it is also possible if
12 more likely to be true or more likely to be false. Just	12 you are going to seek a unit size other than the
13 that simple.	13 standard spacing unit size that a unit can be restricted
14 Is it fair to say that based on yo	14 by depth?
15 understanding of the data, your experience with this	15 A. To be honest with you, Mr. Piotrowski, I'm no
16 type of data, and your study of a particular geology	16 sure of all of the unit qualifications and whatnot.
17 involved here, that it is more likely true than not tru	17 Q. Okay. The unit you have proposed is it
18 that the Sand B gas pool is in fact in the approximate	18 this two quarter acres -- or two quarter section unit
19 location and of the approximate shape you have drawn	19 did you base that on the geological studies that you
20 Exhibit C?	20 undertook as you testified about today?
21 A. Yes. I	21 A
22 where it is diminishes as the amplitudes get weaker	22 Q. And based on the data and the charts you have
23 towards the boundaries. The highest confidence is	23 presented to us today?
24 strongest where the amplitude of this peak event is 25 strong. And the other attributes that I mentioned.	24 A. Yes. And I know I have gone on longwinded. 25 But there is a lot more work that goes into this than is
25 strong. And the other atributes that I mentioned. 90	$\text { Page } 92$
1 The mapping. We will map the far offsets and the	1 not presented. But that is the best shape of a proposed
2 medium offsets and so forth and put it a	2 unit using geographic boundaries that to me encompasses
3 But as I understand my charge in creating a proposed	3 the amplitude feature that we want to te
4 unit and outline to the people that I work with is that	4 Q. The previous exhibits that we looke
5 it needs to be the best unit size that economically and	5 Exhibits A and B -- well, Exhibit A went down to a tim
6 efficiently can be tested and developed. And most	6 of 1.4 seconds. And back to Exhibit C. As you said
7 efficiently and economically drained by one well. And	7 there are different ways you can draw Exhibit C. Is it
8 also that it must incorporate the geographic systems.	8 based on the data that you found down to that depth of
9 And so --	91.4 seconds? Or is it based on something else?
10 Q. Sir, where did you get the instruction that	10 A. Well, this proposed -- and I don't know if
11 must incorporate the geographic land survey system?	11 should have called it that or not. But that is what we
12 A. I believe it was in one of the orders from the	12 are proposing is based on the reflections associated
13 state. Or at least as I interpret it being a non	13 with Sands A and B.
14 lawyer.	14 Q. Okay
15	15 A. And not specific to anything deeper. I wa
16 maroon line. The proposed new unit boundary. Do you 17 see that?	16 just making a point that our exploration strategy is to 17 drill deep.
18	18 Q. Okay. And so there may be Sands C and D and
19 Q. And did you put that maroon line there solely	19 multiple sands below that as well. It is possible.
20 because it incorporates or makes reference to the	20 Right
21 geographic land survey quarter section system?	21 A. Evidence would indicate so based on the Fallon
22 A. It's a neat fit with it; yes. It encompasses	22 1-10 well that there are other sands below there; yes.
23 the majority of the -- it fits on the amplitude nicely.	23 That is why we want to take the well deeper.
24 Q. Okay. And it is basically two quarter	24 Q. And the Fallon well you said got to a base of
25 sections; is that right? \quad Page 91	25 about 5.400 feet. Page 93

24 (Pages 90-93)

1 A. 5,432.	1 that effect.
2 Q. 5,432. That's right.	2 Q. In fact, as we look at Exhibit C, the area of
3 A. Measured depth.	3 the well, the well placed at the location you marked,
4 Q. And it's possible you will drill deeper than	4 that well would actually drain an area, based on your
5 that as well; isn't it?	5 current data, that is significantly smaller than the
6 A. Ye	6 proposed unit; correct?
7 Q. Now, sir, do you understand the relationship	7 A. You mean based on the areal extent of the
8 between a spacing unit and an integration? Or a	8 amplitude?
9 unitized well?	9 Q. Yes. Well, based on your study here. Where
10 A. Can you rephrase your question?	10 you believe the pool is is less than 320 acres; right?
11 Q. Sure. The company you work with here has	11 A. Yes.
12 presented in this case a spacing unit application. And	12 Q. Okay. And so --
13 at some point it may be necessary to integrate the	13 A. For example, the north side of that maroon
14 mineral interests in that area before drilling and	14 fault I don't think would be drained by this well.
15 extraction can occur. Correct?	15 Q. Okay. That is all I was trying to get at.
16 A. Yes, sir.	16 And do you think that the areas -- do you think that any
17 Q. And is it your understanding that integration	17 areas beyond, so to the southwest of what you have
18 will happen within an entire spacing unit?	18 marked as the pool boundary, and so south of that green
19 A. Yes.	19 fault, the two green faults, do you think that those
20 Q. Okay. And so by applying the space units you	20 areas would be drained at all if you were to drill to
21 have you are also suggesting, are you not, that	21 Sands A and B in a designated location?
22 eventually when we get to that point this will also be	22 A. I don't think I can answer that question
23 the unit in which integration of mineral interests will	23 confidently one way or the other. It's possible. I
24 occur?	24 will say it is probably a little bit unlikely. It is a
25 A. Well, that is my understanding that that is Page 94	25 long way. That unit is about one mile from east to $\text { Page } 96$
1 what we usually do. I would assume we would do that	1 west. So you are talking about a long way there.
2 here as well.	2 Q. And the low amplitudes in that southwest
3 Q. Okay. Below the 4,400 foot mark, below the	3 corner would also indicate there is less likelihood of
41.42 seconds, on the exhibits you have put here, have	4 hydrocarbons there; right?
5 you done a detailed study of what other pools or	5 A. Yes.
6 reservoirs of gas or oil might exist?	6 MR. PIOTROWSKI: Thank you, sir, that is all
7 A. Are you referring to a particular exhibit?	7 the questions I have
8 Q. No, sir. I'm asking you if below -- you	8 THE WITNESS: Okay
9 testified today about depths down to about 4,400 feet.	9 THE HEARING OFFICER: Mr. Marotz.
10 Plus a little more from the Fallon well. And I'm	10 Mr. MARTOZ: Yes. Just a few.
11 wondering if you undertaken any study or investigation	
12 below those depths the under the proposed unit here?	12 CROSS-EXAMINATION
13 A. Yes, I have.	13 QUESTIONS BY MR. MAROTZ:
14 Q. Okay. But you haven't chosen to present those	14 Q. Mr. Smith, how are you?
15 to this hearing; correct?	15 A. I'm fine. How are you?
16 A. No, I have not. There is a lot of information	16 Q. I'm well. Just a few questions for you. In
17 that I have learned here that I haven't presented today.	17 Exhibit SR-01, within your declaration, which is
18 Q. I'm sure there is, sir. If we ignore for a	18 Attachment D, Paragraph 18. That would be on page 13 of
19 moment -- take a step back. You said that the proposed	19 the PDF, I believe. You state, "Based on rigorous
20 spacing unit here you said is appropriately described as	20 interpretation of the seismic data I conclude the 320
21 one that could be drained by one well. Do you recall	21 acre geographic unit encompassing the above described 2
22 saying so?	22 quarter sections is the best fit to cover the lands
23 A. In my declaration?	23 underlain by the presumed pool at the primary objective
24 Q. In your testimony 20 minutes ago.	24 Sand B." Is that correct?
25 A. Yeah, I believe I said that. Or something to	$25 \quad \text { A. Yes. }$
Page 95	Page 97

1 Q. So first question related to that is, could
2 you give me an estimated vertical distance between that
3 primary objective sand, Sand B, and the secondary
4 objective sand, Sand A?
5 A. They are pretty close together. I can give
6 you the top -- if I refer to Exhibit A, and it is also
7 within Exhibit B, Sand A, my estimated top is 1139
8 subsea. And so the base would be maybe 40 or 50 feet
9 below that. Call it 1180 or 1190 . And the then top of
10 Sand B is predicted to be 1254 . So between the two tops
11 you are looking at 120 feet or so. 122 feet. And
12 between the base of Sand A, which we don't know how
13 thick this sand could be, it is 12 feet, maybe 15 feet,
14 in the Fallon 1-10. I think it is going to be thicker
15 here because of the amplitude strength. So I think it
16 may be 30 feet. Possibly 40 foot gross. So call it
171180 subsea for the base of Sand A. And that would give 18 you about 70 feet to the top of Sand B.
19 Q. Okay. Thank you.
20 A. So maybe 70 feet between the two. Seventy to 2180 feet roughly.
22 Q. And then your interpretation in Paragraph 18
23 of your declaration. I don't know if there is a need go
24 back to it. But that interpretation, does that equally
25 apply to Sand A? Or is that just specific to Sand B?
Page 98
1 A. Sand A is very similar. And they may -- you
2 know, again, I go back to there is a lot of detail that
you can see when you drill and \log something with the
4 geophysical logs that is below seismic resolution. But
5 the amplitude extent of A is very similar to B. So
6 whether they are -- pool A and pool B is separate I
7 couldn't tell you. Or if it's -- A is just the upper
8 part of a reservoir, and B is the lower part, I couldn't
9 tell you. But the amplitude, when I map the amplitudes
10 up there, they are well described by this unit. And the
11 other thing that I like about it is the units abut each
12 other. If we go to sand -- or Exhibit C. This proposed
13 unit boundary as outlined it is immediately adjacent
14 with a unit that has A and B in it. And, you know,
15 owners within here -- there is no gaps. If you own land
16 in this area you are going to be in that well or this
17 well. One or the other.
18 Q. Perfect. And I think you have already
19 answered my next question. So forgive me if it is a
20 little redundant. I'm just want to make sure I'm
21 running down my list thoroughly.
22 Could you briefly summarize the key
23 similarities and differences between Sand A and Sand B
24 as it relates to your interpretation of the seismic data 25 here?

1
2 the unknown. We know based on drilling the Fallon 1-10
3 well that we have a gas reservoir or pool at Sand B
4 here. And we are producing that. And we have made 1.2
5 BCF from it and continuing to produce --
6 THE COURT REPORTER: Mr. Smith, again, you 7 need to speak up a little and lean forward like you did 8 right there.
9 THE WITNESS: To answer the question. You 0 asked about the similarities. We know from drilling the
Fallon 1-10 well -- prior to drilling the well we had
predicted that we would have a pay sand at Sand A
level -- I named this sand before we drilled anything
out of it. I call that Sand A and I call that Sand B
just based on seismic reflections.
16 Q. (BY MR. MAROTZ) And just to be clear. When
you say a pay sand. Pay meaning hydrocarbon?
A. Yes. Gas -- in this case gas/condensate-

9 bearing sand. We call that a pay sand. I should be
more correct in the terminology. Prior to drilling we
had an objective Sand A. We presumed that gas -- the
gas saturated sand would be here. We named it A in the
drilling prognosis and permit. And when I gave the tops -- formation tops predictions. As I do with all of these permits to drill a well. Post-drilling and post

Page 100
1 drilling a well. Drilling a well we had gas shows in A
2 and B. I believe Mr. Thum has made some exhibits that
3 are part of the record that he may be going through.
4 And the geophysical measurements we took in the well
5 logs prove that there is a gas bearing sand there at B
6 and A associated with these reflections in this
7 particular character that we are mapping. We then
8 completed the well and had produced about 1.2 BCF of
9 gas. 1.2 billion cubic feet of gas from that zone. And
0 so it has proven that this seismic character is
associated with a low velocity, low density, gas bearing
sandstone. We take that same seismic character and
extend it around that wellbore to the north to a
slightly structurally higher location and we see the
15 similar characteristics at Sand B. Similarly, with the
Fallon 1-10 Sand A, we found, I think it is 12 or 15
feet, I haven't looked at the log there recently, of gas
bearing sand that has not been tested. But by analogy
it produced -- or it had gas shows when we drill through
0 it. And it has the same geophysical log characters. A
good porosity, a good resistivity, that we associated
2 with this here. So this is very, very likely going to
be productive as well. And we can follow that event down on the next neighboring feature. And its amplitude
increases of the trough and peak. And so we can map not
Page 101

1 just on this volume -- in this window it shows what this 2 seismic volume is. But as I said earlier I have about, 3 I think, 15 or 20 of these. It varies on the survey.
4 And I mapped the same events on all of those surveys.
5 And you develop confidence if the anomalous behavior is
6 found on multiple different processes. And you look at
7 it in different ways. So when you have that repetition
8 that this is the anomalous behavior at Sand A and Sand
9 B , and it is similar to known productive areas or
10 seismic character at Sand A and B in the Fallon well,
11 and not just here, but in some of the -- nearly all of
12 the 16 other wells that we have drilled -- 15 other
13 wells that we have drilled in the basin. So you develop
14 confidence. And you can describe that areal extent by
15 amplitude maps of the different horizons. The trough
16 and the peak. And so I have probably gone on too long.
17 But the seismic character in the area of the proposed
18 unit that we would like to form of the Sand A
19 reflections, and Sand B reflections, are very similar to
20 what has been proven to be productive in the immediately
21 adjacent unit to the south. And we feel like there is
22 very high likelihood that we will have gas pools at A
23 and B. And we have mapped the areal extent of those.
24 And they seem to concentrate and have a core area that 25 is entirely within this proposed unit. If you look at

Page 102
1 the trough or peak, when we are processing it, it might
2 extend a little bit here or there. But in the main it
3 is very well-centered in this -- and I'm moving my
4 curser around the area of highest peak amplitude --
5 MR. PIOTROWSKI: I am going to object. We are 6 well beyond answering the question here. We are running
7 into a long narrative. Object there is no pending
8 question.
9 THE WITNESS: I was trying to be thorough and 10 I probably have gone too far.
11 THE HEARING OFFICER: That's okay, Mr. Smith.
12 I'll sustain the objection. Mr. Martoz, do you have any
13 further questions?
14 MR. MAROTZ: I have nothing further for
15 Mr . Smith. Thank you.
16 THE HEARING OFFICER: Mr. Christian, any
17 redirect?
18 MR. CHRISTIAN: Very brief.
19 REDIRECT EXAMINATION QUESTIONS BY MR. CHRISTIAN:
Q. Mr. Smith, are you aware of any other
geologist and geophysicists with more experience in the
24 southwest Idaho basin in terms of developing information
25 and interpreting it and putting it into practice than
Page 103

1 you?

2 A. Using the 3-D seismic method I would say there 3 are none. I would be probably the most premiere expert.
4 In terms of fieldwork and studying the basin there are a
5 lot of people that have been studying this area longer
6 than I have in outcropping the field examining wells in
other areas. As to the area that we are exploring in I
would say that I am probably the best expert you could find.

MR. CHRISTIAN: That is all I have. Thank you.

THE HEARING OFFICER: Thank you. Mr. Piotrowski, anything further from you?

MR. PIOTROWSKI: Just two quick questions if I could.

RECROSS-EXAMINATION

QUESTIONS BY MR. PIOTROWSKI:

Q. Mr. Smith, are you aware of any reason why using a different space unit would result in waste of hydrocarbons?
A. Could you remind me again, Mr. Piotrowski, legally how waste is defined.
Q. It is the venting or loss of otherwise comparable hydrocarbons.

Page 104
A. And your question regarding waste is --
Q. Does the size or shape of the unit have any
effect on whether a particular well causes or results in waste?
A. Again, I believe there is something in the 6 statute or the regulatory body that says you don't want
7 to drill unnecessary wells. And you don't want the
8 spacing unit to be smaller than could be effectively
9 drained efficiently and economically by one well. So,
for example, a 160 acre unit, in my view, would not be
appropriate because it would be too small to cover the
area. A 640 -- and I don't know if I'm on the right
ground here legally. But the 640 would probably be too
large because it would include quite a bit of
unproductive acreage.
Q. Sir, that wouldn't result in waste of
hydrocarbons; would it? You are not going to start
wasting hydrocarbons just because the spacing unit is
larger; are you?
A. Again, that is why I asked you about waste.

I'm not really sure of context of waste in the context
that you are asking me.
Q. Sir, one of the bases -- one of the legal
bases to change a spacing unit size is if the -- one of
the basis to amend a spacing unit is if the existing

Hearing June 13, 2024
spacing unit results in waste. But the contours of a
spacing unit -- will the shape or size of the spacing
3 unit change whether or not a particular well has to vent
hydrocarbons into the atmosphere?
A. Well, we are not going to be venting any

6 hydrocarbons. It is not something we would do or are allowed to do.
8 Q. Okay. And so in that sense of waste the size
of the spacing unit has no effect on whether or not you
10 or the companies you work with are going to be 11 discharging gas into the air; right?
A. All I can say is -- and I don't control the
well head operations. But we are not going to be
14 venting any gas. As to definition of waste in the
15 statutes or the regulatory body I don't know that I can
16 comment on that. I'm not as up on the definition.
Q. As long as the spacing units proposed -- I'm
sorry. Okay. Thank you. That is all I have.
MR. CHRISTIAN: I have nothing. Thank you.
THE HEARING OFFICER: All right. I think we
are done with you, Mr. Smith. May this witness be excused?

MR. CHRISTIAN: Yes.
THE HEARING OFFICER: All right. You are welcome to stay and listen if you desire. But if you

Page 106
1 have other things you would like to do you are welcome
2 to log off as well, Mr. Smith.
THE WITNESS: Thank you.
THE HEARING OFFICER: Do you have any 5 additional witnesses?
6 MR. CHRISTIAN: The applicant has no other 7 witnesses.
8 THE HEARING OFFICER: Okay. Mr. Piotrowski, 9 do you have any witnesses that you desire to call?
10 MR. PIOTROWSKI: We do not plan to call any 11 witnesses.
12 THE HEARING OFFICER: Mr. Marotz, do you have 13 any witnesses?

MR. MAROTZ: Yes. We would like to call 15 Mr. James Thum.

THE HEARING OFFICER: Okay. While we are
17 getting ready to do Mr. Thum why don't we take our 4:00
18 break. A quick ten minute break.
19 MR. MAROTZ: Sounds good to us.
20 THE HEARING OFFICER: So we'll be off the 21 record.
22 (Recess.)
23 THE HEARING OFFICER: Back on the record. But
24 before we start do you want to turn down the volume of
25 the online people now that Mr. Smith is done testifying. Page 107

So if Mr. Piotrowski has an objection or when it is his
turn to ask questions we don't have as much
interference.
Mr. Marotz, the floor is yours.
MR. MAROTZ: Thank you. We'll call Mr. James
Thum from the Idaho Department of Lands.

JAMES THUM,

first duly sworn to tell the truth relating to said
cause, testified as follows:

DIRECT EXAMINATION

QUESTIONS BY MR. MAROTZ:

Q. Thank you. Mr. Thum, can you please state for
me your full legal name?
A. James Arthur Thum.
Q. And are you currently employed?
A. Yes, I am.
Q. And where are you currently employed?
A. The Idaho Department of Lands in Boise, Idaho.
Q. And what is your current position title with the department?
A. I am the oil and gas program manager.
Q. How long have you fulfilled those duties?
A. Since January of 2016. So approximately eight Page 108
years and five months.
Q. And do you hold any higher education, degrees, certificates? What are those in and when did you earn them?
A. I have a bachelor of science degree in geology, which I got in 1981. And a master of science in geophysics that I got in 1983.
Q. Prior to your work with the department did you have any experience in the oil and gas industry?
A. Yes, I do. I have over 30 years experience in both USA and international onshore and offshore oil and gas exploration and development projects. As well as geothermal, coal bed methane, and underground gas
storage operations and development. This experience
includes design and management of seismic field
operations, seismic data processing sequences,
geophysical modeling, and the integration of geological
data with geophysical data to interpret geologic
conditions and the presence of hydrocarbons in the subsurface.
Q. So when an application to establish a spacing unit is filed with the Department of Lands do you have a role in evaluating that application?
A. Yes, I do.
Q. And what is your role in that process?

Hearing June 13, 2024

exhibits the department has submitted in this matter.
So starting with IDL-01. Which is pulled up on the
screen right now. What does this exhibit depict?
A. IDL-01 is a map of the Harmon field area
showing the proposed spacing unit, as well as existing
spacing units.
Q. And to be clear the proposed spacing unit is
highlighted there in yellow and with a kind of turquois
dashed boundary?
A. That's correct.
Q. Are there any other nonstandard size spacing
units in the Harmon field area?
A. Yes. In referring to IDL-01, Unit E, is a

480 acre unit, where the Dutch Lane 1-13 well was
drilled and is producing from the C and D stands. Unit
A is a 300 acre unit encompassing the Fallon 1-10 well
17 which produces in the B Sand. Also one of the target
18 sands in this proposed unit.
Q. And both of those units are labeled and
depicted on this map; correct?
A. That's correct.
Q. So is it safe to say that a nonstandard size
spacing unit like the one proposed in this current
application is consistent with the historical
development in Harmon field?
Page 114
A. Yes, it is consistent.
Q. Next we'll move on to IDL-02. What does that exhibit depict?
A. This is a depth interval from approximately

3,590 feet measured depth to approximately 3,750 feet
measured depth of the mud log, which is depicted on the
left. And a density neutron triple combo well log
depicted on the right for the Fallon 1-10. And that
well is U.S. well number 11-075-20032. It shows the
interval of the A Sand as it was encountered in the
Fallon 1-10 well.
Q. And for reference these logs are all publicly
available on the department's website; correct?
A. Yes, it is.
Q. And the Fallon 1-10 well is the well
immediately to the south of the proposed spacing unit?
A. That is correct.
Q. And so how does this data from the Fallon 1-10
well inform your understanding of the probable presence
of hydrocarbons in Sand A under the proposed spacing
unit in this application?
A. The mud \log on the left side of Exhibit IDL-02
is constructed from rock fragments ground by the drill
bit as it encounters the subsurface formation. Any
hydrocarbons encountered are detected and noted on the
Page 115

1 mud log. This log indicates that there were quote,
2 unquote, shows, or the presence of hydrocarbon within
3 the A Sand interval. On the right side of Exhibit
4 IDL-02 is the density neutron triple combo well log
5 through the A Sand interval. The curves on the well log
6 are generated from geophysical data gathered for
7 measuring tools, or commonly referred to as logging
8 tools, which are lowered into the well once it has been drilled. The response of the logging tools through the A Sand interval, in combination with the mud log
information, indicates the likely presence of the A
Sand. In addition, the measurements indicate the A Sand
likely contains hydrocarbons. The presence of
hydrocarbons in this interval in the spacing unit
directly south of the proposed unit increases the
likelihood that hydrocarbons will be present in the same
interval within the proposed 320 acre unit.
Q. Excellent. And finally we have IDL-03. And what does this exhibit depict?
A. Similar to Exhibit IDL-02, this is a depth interval from approximately 3,710 feet measured depth to approximately 4,000 feet measured depth of the mud log, which is depicted on the left. And the density neutron triple combo well \log depicted on the right for the Fallon 1-10, which is U.S. well number 11-075-20032, it

Page 116
shows the interval of the B Sand as it was encountered in the Fallon 1-10 well.
Q. And so same question as for IDL-02. How does this data inform your understanding of the probable presence of hydrocarbons within the Sand B formation under the proposed spacing unit?
A. The well logs depicted in Exhibit IDL-03 are from the same well logs for the Fallon 1-10, but from a depth interval covering the B Sand. The mud \log on the left side of Exhibit IDL-03 is constructed from rock fragments ground by the drill bit as it encounters the subsurface formation. The hydrocarbons again are noted as detected on the mud log. This indicates there were shows or the presence of hydrocarbons within the B Sand interval. On the right side of Exhibit IDL-03 is the
density neutron triple combo well log through the B Sand
interval. The curves on the well log are generated from geophysical data gathered from measuring tools that had been lowered into the drilled hole. The response of the logging tools through the B Sand interval, in combination with the mud \log information, indicates the likely presence of the B Sand. In addition,
measurements indicate the B Sand likely contains hydrocarbons. And as you'll note on this \log this well was drilled and completed and is producing from the B Page 117

Hearing June 13, 2024

1 Sand interval. And based on our last information
2 reported to the state it has produced approximately 1.2
3 billion cubic feet of gas. Approximately 19,869 barrels
4 of condensate. And approximately 11,000 barrels of
5 water. And that producing interval was between February
6 of 2022 and March of 2024.
$7 \quad$ Q. And that is data from just above the lower 8 purple line where it says $\mathrm{BC}, \mathrm{BW}, \mathrm{BCFG}$?
9 A. That's correct.
10 Q. And so likewise the presence of hydrocarbons
11 and production in this interval within the Fallon 1-10
12 would increase the likelihood of hydrocarbons in the
13 same formation of the proposed unit; is that correct?
14 A. That's correct.
15 Q. And so based on your review of the application
16 and exhibits and testimony in this matter have you
17 received sufficient information to make a recommendation
18 with respect to this spacing application?
A. Yes, I have.
Q. And what is your recommendation?
A. Based on the information submitted by the

22 applicant, the supplemental information requested by the
23 department, and the well \log information for the Fallon
24 1-10 well directly to the south, the department feels
25 the geologic information presents a reasonable
Page 118
1 interpretation of the probable configuration of the
2 hydrocarbon trap in the proposed spacing unit.
3 Therefore, the department recommends the request for the 4 spacing unit be approved.
5 Q. And what leads you to that recommendation?
6 A. The geophysical information presented by the
7 applicant integrates well and is supported by the well
$8 \log$ information analyzed by the department for the
9 closest producing well in the same productive sandstone
10 reservoirs. The well log information for the Fallon
$111-10$ is productive or likely productive in the case of
12 the A Sand and supports the likelihood of hydrocarbons
13 in the same interval in the proposed unit. The seismic
14 profiles and seismic amplitude maps submitted for the
15 proposed unit exhibit seismic responses in the intervals
16 consistent with the A Sand and B Sand in the spacing
17 unit encompassing the Fallon 1-10 well. The seismic
18 responses are within the same interval in the proposed
19 unit as the currently producing unit for the Fallon 1-10
20 well. They indicate a probable productive limit of the
21 pool within the proposed unit. Therefore, in the
22 department's opinion, the proposed unit is appropriate.
23 The integration of the data supports the
24 likelihood that the proposed unit is based on a
25 reasonable geologic interpretation consistent with a

1 known geology of the Western Snake River Basin. Based
2 on the known but limited production data for the Harmon
3 Field and the Western Snake River Basin. It is also
4 likely that the probable hydrocarbon accumulation within
5 the proposed unit would be efficiently and economically
drained by one well.
7 MR. MAROTZ: Thank you, Mr. Thum. I have 8 nothing further.
9 THE HEARING OFFICER: Okay. Mr. Piotrowski
0 and Mr. Christian do you have a preference who goes next?

MR. PIOTROWSKI: No preference.
MR. CHRISTIAN: I have no preference. I'm happy to let Mr. Piotrowski go first.

THE HEARING OFFICER: Okay. Mr. Piotrowski, the floor is yours.

MR. PIOTROWSKI: Thank you.

CROSS-EXAMINATION

QUESTIONS BY MR. PIOTROWSKI:
Q. Mr. Thum, I'm looking here -- still up on the screen is Exhibit IDL-03. Do you see that?
A. I do.
Q. And it looks like -- I'm looking at the
right-hand side of that exhibit and I see number 4000
Page 120
1 towards the bottom of the chart on the right. Does that indicate the depth of that bit of data?
A. I'm sorry? I didn't catch your last word.
Q. Sure. Does that 4000 , is that the depth of the well of the data from that point?
A. This is only a partial display. As I said in my testimony this is only the portion that covers the B 8 Sand in the Fallon 1-10 well.
9 Q. Right. And I'm just saying it looks like it runs from -- well, a little west of 3750 . Which I see towards the top of that page. Down to a little west of 4000 at the bottom of that page. So for this document does is that indicating the well depth where this data was obtained?
A. Yes, it does.
Q. Okay. And is the same thing true for Exhibit

IDL-02 if those numbers in the middle of the density
neutron \log relate to the depth of the well where that
data is coming from?
A. For that interval of the log; yes.
Q. Okay. And it looks like the deepest part of
the well I see here is this 4000 on IDL-03; is that
correct?
A. Yes, it is.
Q. Okay. And that is the well depth, right, as

```
opposed to the depth below sea?
    A. That is incorrect. It says at the top that
the total depth of this well was drilled to 5,434 feet
measured depth. As I stated the 4,000 foot is the
bottom of the interval we are displaying.
    Q. And you don't have any indication -- you
didn't go any deeper than that in these exhibits; right?
    A. I did not.
    Q. Okay. And your testimony today is based on
what you -- in part on what you saw in these exhibits;
right?
A. That's correct.
    Q. Okay. How big are the reservoirs or pools of
natural gas below 5,500 feet for this tract of land?
            THE COURT REPORTER: I apologize. To make
sure I got that question can you repeat it?
    A. (BY MR. PIOTROWSKI) What size, shape, and
shade are the reservoirs or pools of hydrocarbons below
5,500 feet?
    A. I don't have that geological information.
    Q. So without that data you can't come to a
conclusion about that; is that fair?
    A. Yes. That was not part of the request so I
did not evaluate that.
Q. Are you recommending that a spacing unit be
```

Page 122
approved for all depths in this case?
A. I believe it is appropriate for the sandstones
that were asked in the request. And that is all we
evaluated
Q. Are you recommending a spacing unit that goes
to all depths?
A. I'm recommending a spacing unit for the A and
the B Sand.
Q. Okay. So would you agree to accomplish that it
would be appropriate to limit the spacing unit to a
depth of approximately 5,434 feet?
A. I can't make that assessment right now.
Q. What do you mean you can't make that
assessment?
A. That wasn't part of the request.
Q. Okay. So you haven't evaluated anything below
5,400 feet, have you, for this application?
A. I have not.
Q. I'm sorry, I didn't hear that.
A. I have not.
Q. Okay. And so it is entirely possible, we
don't know one way or the other, whether, in fact, there
is another pool of hydrocarbons down there that extends
under the whole 640 acre unit that would normally be the
default spacing unit under Idaho law; is that correct?
Page 123
A. Can you repeat that question?
Q. Sure. Do you agree with me that Idaho law,

3 the law that you helped administer, expresses a default
4 of 640 acre spacing units?
A. 640 acres is a default unit for statewide

6 wells. But that is not what was requested here.
Q. In fact, you administered -- I believe I heard

8 your testimony that part of your obligations are to
9 administer the Oil and Gas Conservation Act; right?
A. I work with the rest of the department to do that.
Q. Okay. So are you familiar for instance with

Idaho Code Section 47-317?
A. I am
Q. And are you familiar with Subsection (3)(b)
that says every directional well and vertical well
drilled for gas shall be located in a spacing unit
consisting of a 640 acre governmental section or lot or a tract?
A. I don't have the statute in front of me. But

I --
Q. You are not sure whether that is what the statute provides? Or are you --
A. No, I'm assuming that what you are reading is correct. But I don't have that in front of me to

Page 124
1 confirm that.
Q. Okay. So what is happening here is the
applicant is asking for a variation from the normal 640 acre unit; right?
A. That's correct.
Q. That is not just for statewide units. All gas

7 wells are supposed to be on 640 acre spacing units;
8 correct?
A. Not if an applicant comes in and requests a
variance. Which they are allowed to under 47-317.
Q. Right. And to get a variance the Department of Lands would have to find that that variance --

THE COURT REPORTER: I'm sorry. If you could slow down a little. I am having a hard time.

MR. PIOTROWSKI: Sure.
Q. (BY MR. PIOTROWSKI) In the same section of

Idaho Code 47-317, in Subsection 5, I'll read it to you.
And I'll you ask you to assume I'm reading it
accurately. "To authorize an amendment, the department
shall find that such amendment would assist in
preventing the waste of oil and gas, avoid drilling of
unnecessary wells, or protect correlative rights."
Does that sound familiar to you?
A. Yes, it does.
Q. In this particular case in what way would

Page 125
going from a 640 acre unit to a 320 acre unit avoid or
prevent the waste of oil and gas?
3 A. I can't answer that.
4 Q. There is no way in which that would avoid
waste; is there?
6 A. I can't answer that.
$7 \quad$ Q. Are you aware of any way which a smaller unit in this case avoids waste?
A. It is. But as I stated in the beginning of my

10 testimony we do not have the luxury of hundreds or
thousands of wells to understand how drainage will occur
from a well. And the only way we can do that is to
13 gather additional information through additional wells.
14 So I can't make that assessment.
A. I can't answer that question.
Q. Okay. You don't know the answer to that question; do you?
A. Again, we don't have a lot of geologic
information here. So that would be pure speculation on my part.
Q. So would the size -- so you could always

Page 126
speculate on how the spacing unit size might or might not affect waste. Is that what you are saying?
A. I'm not going to speculate on that.
Q. And if you were to say anything on that topic it would be speculation; right?
A. If you put it that way I suppose so.
Q. Would the size of the spacing unit in this
case have any impact on healthy wells an operator is eventually allowed to drill?
A. I don't know. I can't predict what the operator is going to want to drill in the future. I'm not privy to that information.
Q. So was the desire to avoid drilling
unnecessary wells a factor in your conclusion that thi is an appropriate application and should be granted?
A. That is speculation on my part.
Q. It would be speculative for you to address the
drilling of unnecessary wells? Or do you mean speculative as to what you rely on?
A. For any future wells I can only speculate on that.
Q. Okay. So you don't know what wells might eventually get drilled on this piece of land; right?
A. No, I'm saying in the entire field I don't
know what wells will be drilled.
Page 127

1 Q. Okay. When it comes to this particular pool
2 of reservoir -- or reservoir hydrocarbons does the size
3 of the spacing unit change the number of wells that will
4 have to be drilled to access the B and A Sands that have
5 been talked about in this hearing?
A. Based on the information presented today, and

7 in the application, I think the one well would be
8 appropriate to drain that. But, again, this is
9 speculation. You never know what you are going to encounter until you drill a well.
Q. But as we sit here today regardless of the
size of the spacing unit this pool that Mr. Smith
identified for us can be drained by one well regardless
of which spacing unit it might be in; right?
A. It likely could.
Q. Okay. And in this case if we change the
spacing unit from 640 to 320 acres does that in any way
protect correlative rights?
A. It depends on what is found in the well.
Q. What do you understand to be a correlative
right? I'm sorry, let me withdraw that. Are you
familiar with the statutory definition of correlative
rights?
A. Yes, I am.
Q. Okay. And that definition provides

Page 128
correlative rights are the opportunity of each owner in
2 a pool to produce his just and equitable share of oil
and gas without waste; correct?
A. That is my understanding; yes.
Q. Now, if the spacing unit is 640 acres will any of the owners of those 640 acres in any way be denied
the ability to produce their oil and gas?
8 A. That is speculation on my part.
9 Q. Well, I mean, so you don't know whether it would result in any impact on correlative rights to choose a bigger or a smaller spacing unit in this case; is that fair?
A. For the information presented this is appropriate. In any sense when you drill a well you can be surprised. You may be find something else. So there may be something that is found in the well when it is drilled that may create an opportunity in another part of the section where somebody else could drill. But we don't know that until the well is drilled. But for what was applied for this is appropriate.
Q. And so as far as you can tell right now is it true that you don't know whether changing the spacing unit size will affect anyone's correlative rights or not; do you?
A. For what is presented this is appropriate.

Hearing June 13, 2024

necessarily result in drilling more wells than it would
if you just left the 320 acre unit?
A. I don't know. That is speculation. That is
an operator decision.
Q. In your opinion will approving a larger

6 spacing unit result in drilling more wells?
A. I don't have an opinion on that.
Q. Do you believe that anybody will use their
right to develop their oil and gas resources if the
10 hearing officer and the board approves, the commission 11 approves, a 640 acre unit?
A. I can't predict what they would approve.
Q. I'm saying if it were to be approved would you believe it would harm anybody's correlative rights?
A. I can't say.
Q. You are unable to say "yes" or "no" to that question?
A. Yeah, I can't answer that.
Q. Okay. If we can take a look please at -maybe somebody can pull it up. I certainly can if necessary. Maybe it is not necessary. Do you recall Exhibit C that Mr. Smith testified about? Which is the amplitude strength map?
A. Yes.
Q. And do you agree with the conclusions and

Page 134
opinions expressed by Mr. Smith in where he placed the various elements on that map in Exhibit C?
A. I don't have the luxury of all of the data
that Mr. Smith constructed that map. As I stated
earlier I believe that his conclusions are a reasonable
interpretation of the geological and geophysical data in the basin.
Q. And so if his conclusions are reasonable then would you also agree that the proposed spacing unit is larger than it needs to be in order to drain Sands A and B?
A. I believe it is appropriate.
Q. Do you believe that the people in the
northeast corner of that proposed unit have any oil and gas in Sands A and B?
A. I don't know. The well has not been drilled.
Q. According to Mr. Smith -- do you agree with

8 Mr . Smith that with those low amplitudes, and that fault
line that is marked in brown in Exhibit C, make it
extremely unlikely that northeast corner contains any hydrocarbons in Sands A and B?
A. As presented, yes, that is likely correct.
Q. So Mr. Smith's opinion on that you believe is a reasonable one?
A. I do.

1
2 it is appropriate to draw the spacing unit in a
3 rectangle when we are trying to define a natural
4 feature?
A. Because that is how spacing works.
Q. What do you mean by that is how spacing works?
A. It a geographic boundary for a geologic
description. And that is virtually impossible to do
with a geographic boundary.
Q. Sir, I've owned a lot of real estate in the State of Idaho over the years. None has solid section lines. Do you think there was some problem in geographically describing that property?
A. I believe the statute says that units shall be described using geographic boundaries. So that is how it is done in every state in the union.
Q. In fact, the statute says the geographic boundary of a unit shall be described in accordance with the Public Land Survey System. Do you believe that is correct?
A. Yeah, that sounds like a correct reading.
Q. Now, couldn't you describe something in accordance with the Public Land Survey System by referencing a spacing unit by identifying township and range, et cetera, and then using metes and bounds, and Page 136
measure it just like we all do for both commercial and real estate property?
A. Metes and bounds are different from point of call. And point of call is generally used as a geographic boundary.
Q. Is it possible to describe a land mass, a 7 service area, in accordance with the Public Land Survey
8 System, when that area that you are describing is not 9 precisely coextensive with the section lines?
A. I don't understand what you are asking.
Q. Well, let's say I bought a round piece of property. It's a circle. On the surface it is described as a circle. And obviously it is not going to be coextensive with a section. Would it be possible to provide a geographic description of the location of that circle in accordance with the Public Land Survey System?
A. That is not how units are described.
Q. Could you describe my hypothetical circle in accordance with the Public Land Survey System?
A. But you don't describe units that way.
Q. Sir, that is not what I'm asking you. I'm
asking you if you picked a unit and you decide I want a circular unit could you describe that unit in accordance with the Public Land Survey System?
A. I suppose you could. But it is not how it is

Page 137

```
done anywhere
Q. Okay. Now, the statute here in Idaho says you
3 will describe -- the unit shall be described in
4 accordance with the Public Land Survey System. And if
5 the unit --
6 THE COURT REPORTER: Hold on, Mr. Piotrowski.
7 Slow down.
8 MR. PIOTROWSKI: It's a long question and I
9 went too fast.
10 THE COURT REPORTER: Yes, you did.
11 Q. (BY MPIOTROWSKI) When you describe something
12 in accordance with a Public Land Survey System does that
1 3 \text { mean you have to make all of your borders right on the}
14 section lines?
    A. I believe that is how the statute is
16 interpreted; yes
    Q. And, in fact, in your exhibit didn't you just
1 8 \text { show us several spacing units that don't follow section}
19 lines?
    A. I don't believe so. I think they all follow
section lines.
    Q. If we can take a look at your Exhibit IDL-01.
2 3 \text { If you look at what is labeled as Unit A. Do you see}
24 that?
25 A. Yes, I do.
```

1 Q. Now, there is a dashed red line that was an
2 earlier unit, spacing unit, boundary; correct?
3 MR. BROWN: I'm not talking. I'm just
4 listening to the zoom call.
5 THE HEARING OFFICER: Mr. Brown, can you mute
6 yourself.
$7 \quad$ Q. (BY MR. PIOTROWSKI) So the red dotted line
8 around Unit A it followed the section lines; right?
9 A. Yes, it did.
10 Q. Other than the Payette River which happens to
11 be the state line in this case.
A. That's right.
Q. And the purple line inside Unit A, what is
14 that one for? That is an approved integrations unit.
15 That doesn't follow the section lines; does it?
16 A. That can be described as the -- I believe the
17 northern $1 / 2$ of -- I think that's Section 16 -- northern
$181 / 2$ of the NE $1 / 4$ of Section 16. And the NE $1 / 4$ of the
19 NW $1 / 4$ of Section 16. So, yes, it is using section
20 lines.
21 Q. So you just described that unit in accordance
22 with the Public Land Survey System; right?
23 A. More or less.
24 Q. And you can still do that even if the unit was
25 not square or rectangle? You could still do that if you

1 use precise measurements; couldn't you?
A. I have never seen any drawn that way.
Q. Okay. Now, in fact, if we look -- still
looking at Unit A. There is even a smaller dotted red line. Do you see that one?
A. I do. But that is not an existing unit.
Q. Well, what is that?
A. That is a withdrawn unit boundary.
Q. So is that a unit that was approved and then
later withdrawn? Or was that a unit that was applied
for and withdrawn before it was approved?
A. It was withdrawn before it was approved.
Q. Okay. So in Unit A we found a unit that is described in part as portions of a quarter section;
right? The north half of the east half of whatever?
A. I believe that's correct; yes.
Q. Okay. And do you believe that that particular decision is consistent with the statute that you have to apply and enforce?
A. Yes. I believe it is appropriate; yes.
Q. Is there anything in the statute that says a
spacing unit needs to be rectangular? Does it use the word rectangular?
A. I'm not aware of that wording; no.
Q. And nothing in that statute says that units

Page 140
need to be square either; do they?
A. I'm not aware of that wording in the statute either.
Q. Okay. And so what is required though is that you be able to describe the property in accordance with 6 the Public Land Survey System. I think we agree on that much. Is that right?
A. It doesn't say -- it doesn't use the word property. I'm aware of that.
Q. I'm sorry, the Public Land Survey System. So other than that statement that says that the unit shall be described in accordance with that system is there any other statutory guidance that you are aware of about what shape or what size, other than 640 acres, the spacing units should be?
A. No. Unless you want to read it to me.
Q. Yeah, I'm not aware of any. That is why I'm asking you. Are you aware of any?
A. No. And I don't have the statute in front of me.
Q. Okay.

MR. PIOTROWSKI: Thank you, Mr. Thum. I appreciate your patience. That is all I have.

THE HEARING OFFICER: Mr. Christian.

Page 141

1 CROSS-EXAMINATION	1 A. That's correct.
2 QUESTIONS BY MR. CHRISTIAN:	2 Q. It is the NE $1 / 4$ section of Section 9 and the
3 Q. Good afternoon, Mr. Thum. I want to go back	3 NW $1 / 4$ section of Section 10. In the absence of an
4 through some of the statutory sections that Mr.	4 order do you agree that the formation that is at issue
5 Piotrowski discussed with you. Because I think he left	5 here, Sands A and Sand B accumulations that the
6 some things out.	6 applicant is focused on, would be split up between
7 MR. PIOTROWSKI: Object to the commentary.	7 Sections 9 and 10?
8 Can we strike that from the record, please?	8 MR. PIOTROWSKI: Objection. Leading.
9 THE HEARING OFFICER: It is stricken. Just	9 THE WITNESS: Can you repeat the question.
10 the commentary about leaving things out. You can prove	10 THE HEARING OFFICER: Let me rule on the
11 any point you would like to through the testimony	11 objection. Do you want to respon
12 this witne	12 MR. CHRISTIAN: I asked him if he agrees with
13 MR. CHRISTIAN: Thank you, madam hearing	13 what I have described.
14 officer. I would also like to ask that Mr. Piotrowski	14 MR. PIOTROWSKI: That is a leading question.
15 refrain from from cutting either me off or a witness of	15 MR. CHRISTIAN: It doesn't direct him to
16 when they are speaking. He has been doing it today. He	16 answer "yes" or "no."
17 has done it before	17 MR. PIOTROWSKI: It is still a leading
18 MR. PIOTROWSKI: When I need to make an	18 question.
19 objection I'll raise my objection. Other than that I'll	19 THE HEARING OFFICER: Mr. Piotrowski, let me
20 do my best.	20 rule on this. We have a lot of leeway in administrative
21 THE HEARING OFFICER: Thank you, Mr.	21 proceedings. Including asking leading questions. But
22 Piotrows	22 this witness is asking on cross-examination, which
23 Q. (BY Mr. CHRISTIAN) Mr. Thum, Mr. Piotrowski	23 leading questions are also permissible.
24 referred you to section -- Subsection 3 of 47-317 in 25 Idaho Code. Which is the section that deals with the	MR. PIOTROWSKI: The witness is not hostile to 25 Mr . Christian or his client. The witness is in line
Page 142	Page 144
1 spacing configurations; right?	1 with his client. That is why it is an inappropriate
2 A. That's correct.	2 leading question.
3 Q. Now, I will read to you the first part of	3 THE HEARING OFFICER: Mr. Piotrowski, the
4 Section 3. It says, "In the absence of an order by the	4 rules of evidence do not apply to these proceedings.
5 department establishing spacing units, or authorizing	5 I'm got to permit the question to stand as asked. I
6 different well density patterns for particular pools or	6 will ask the court reporter to read it back, please.
7 parts thereof, the following requirements shall apply."	7 MR. CHRISTIAN: How about if I just reask the
8 Do you understand that to mean that default spacing	8 question.
9 system applies in the absence of an order establishing a	9 THE HEARING OFFICER: That works as well.
10 spacing unit or units?	10 Q. (BY MR. CHRISTIAN) Mr. Thum, do you
11 A. I do.	11 understand that in the absence of an order establishing
12 Q. Okay. Now, Subsection B of 47-317 says -- and	12 spacing units that the formation at issue here would be
13 I think Mr. Piotrowski may have read you part of this as	13 split between two different sections?
14 well -- that a directional or vertical gas well shall be	14 A. I do.
15 located in a spacing unit consisting of a 640 acre	15 Q. So if it were to be produced based on default
16 governmental section or lot or tract, or combination of	16 spacing it would require two wells to produce the
17 lots and tracts substantially equivalent thereto.	17 formation rather than one; right?
18 Do you understand that to mean that ordinarily	18 A. As long as they were in legal locations; yes.
19 a default spacing section for a gas well -- or a spacing	19 Q. Yes. You would have to comply with setback
20 unit for a vertical gas well is a standard 640 acre	20 requirements and that sort of thing?
21 unit?	21 A. Correct.
22 A. I do.	22 Q. So does that tell you whether the requested
23 Q. Okay. So in this instance the applicant has	23 spacing unit may prevent the drilling of unnecessary
24 requested a different kind of -- an order establishing a	24 wells?
25 spacing unit that straddles two sections; right?	25 A. Yes, it could potentially do that. Again, as
Page 143	Page 145

I stated, it depends on what the well finds.
Q. Sure. Mr. Piotrowski also asked you about

3 correlative rights. Let's assume the spacing order that
the applicant request was not granted. And that the
applicant had to go drill into the formation, let's say,
6 through a spacing unit that was the entirety of Section
9. Based on Mr. Smith's testimony is it -- do you
understand that outside of the NE $1 / 4$ section of Section
9 the rest of the section would not be prospective for
Sands A and B? The portions of Sands A and B that are
being pursued by the applicant here?
A. Potentially, yes. That's correct.
Q. Okay. So at least based on the information
that Mr. Smith has presented, and the interpretations he
has offered in his testimony, three-quarters of that --
of the default unit being Section 9 would be
nonproductive?
A. That's correct.
Q. However, because of the way the statute applies, revenue from a well, encompassing all of Section 9 , would be shared among all of the property owners of Section 9; right?
A. That's correct.
Q. Okay. So the correlative rights of the folks
in the NE $1 / 4$ section of Section 9 would be impacted?
Page 146
A. Potentially, yes.
Q. Okay. You had a discussion with Mr.

Piotrowski about the description of the unit in
accordance with the Public Land Survey System.
What do you understand the Public Land Survey
System to include? Let me ask the question different
way. How do you understand the Public Land Survey
System to describe land?
A. By section.

10 Q. Or portions thereof?
11
12
13
14

$$
15 \text { that the proposed unit area anyway is described in }
$$

accordance with the Public Land Survey System?
A. That's correct.
Q. Okay. And the statute just says -- it is

47-317(2). Mr. Piotrowski also read it to you. It says
the units established by the department shall be
geographic. What do you understand that to mean?
A. That they do not follow --

MR. PIOTROWSKI: Objection. This is a legal question that he is asking. He is asking for a statement about a legislative addendum. What was meant Page 147

1 by the legislature by those choice of words.
MR. CHRISTIAN: Mr. Piotrowski asked a number
3 of questions asking Mr. Thum to interpret 47-317. And
4 I'm merely following up on that.
5 MR. PIOTROWSKI: And I disagree that he is 6 qualified to answer those questions.
7 THE HEARING OFFICER: I agree, Mr. Piotrowski,
8 you did spend asking a number of questions on what --
9 how a spacing unit shall described vis-a-vis geographic
boundaries. Even including circular spacing units as an
example. So I'm going to permit these questions.
MR. CHRISTIAN: You can answer the question.
THE WITNESS: Can you read the question back to me, please.

MR. CHRISTIAN: I can ask the question again.
Q. (BY MR. CHRISTIAN) I read to you the line
that said these units established by the department
shall be geographic. And I asked you what your
understanding of that was.
A. That you would use sections or portions of sections to make those descriptions.
Q. In your experience in the industry, as you
have described in response to Mr. Marotz's questions, is
it ordinary to describe a spacing unit by reference to
an interpreted geologic boundary of a pool?
Page 148
A. Never in my experience; no.
Q. I understand I think there is one place in the
country in south Louisiana where they attempted to do it and then everybody just fights about it all of the time.

MR. PIOTROWSKI: Objection. Foundation.
Q. (BY MR. CHRISTIAN) Do you have any
understanding about that?
A. I have worked there, but never had to draw a
unit boundary like that.
Q. Mr. Piotrowski asked you about waste. And you may recall -- do you recall his questions to Mr. Smith about the same subject?
A. Vaguely, yes.
Q. Okay. He talked about the escape or releasing
of gas above ground. Do you understand -- are you
familiar with the definition of waste in Idaho Oil and
Gas Conservation Act?
A. Yes.
Q. And with respect to gas it includes a
component that relates to operating or producing a well
in a manner that results in decreased pressure, or
otherwise results in a diminishment of the ultimate
amount of the resource to be produced; right?
A. That's correct.
Q. And Mr. Piotrowski left that out of his

1 discussion; right?	1 that corresponds exactly to where that pool is below the
2 A. I don't remember.	2 ground?
3 Q. If a unit is drawn excessively large or	3 A. It is not. Based on the nature of the data
4 excessively small could it result in what I would call	4 acquired. And that is why you space appropriately to
5 underground waste? In other words, the drilling of	5 allow for those uncertainties.
6 wells in such a manner and pattern that the ultimate	6 Q. And in the event that information gleaned from
7 recovery of the resource may be diminished?	7 a well in the spacing unit shows that the unit is either
8 A. In general, yes, that is correct.	8 larger or -- or the subsurface reservoir, rather, is
9 Q. Okay. In your view, based on the information	9 either larger or smaller than the spacing that it should
10 that you received from the applicant, and the testimony	10 provide, the department has mechanisms to update the
11 that has been presented here today, is it your view that	11 size of those spacing units, depending on the evidence;
12 the proposed unit area is a reasonable configuration to	12 correct?
13 produce the overall resource in the area in an efficient	13 A. That is correct.
14 manner?	14 MR. MAROTZ: Thank you. That is all I have.
15 A. As I stated in my testimony, yes, that is	15 THE HEARING OFFICER: Mr. Piotrowski, the
16 correct.	16 floor is yours.
17 MR. CHRISTIAN: I think that's all I have.	
18 THE HEARING OFFICER: Before I ask Mr. Marotz	18 RECROSS-EXAMINATION
19 or Mr. Piotrowski if they have anything left -- well,	19 QUESTIONS BY MR. PIOTROWSKI:
20 let me ask that question and about how much. Because we	20 Q. Mr. Thum, you're aware, aren't you, that it is
21 are at the breaking point. I don't want to get all	21 appropriate to, under the statutes in this case, to ask
22 motherly on you. But we are getting a little bit tense	22 the spacing unit be either not located within the
23 and grumpy here. So I think a break could be useful.	23 boundaries of a section, or not within a quarter
24 But if there is only a couple follow-up questions then I	24 section, or even a quarter-quarter section, pursuant to 25 Idaho Code 47-317(4)(c); is that right?
Page 150	Page 152
1 open it up to public comment, if any.	1 A. I don't have that section of code in front of
2 MR. MAROTZ: I have about four or five	2 me . So I can't confirm that
3 questions.	3 Q. Do you recall seeing that section that allows
4 THE HEARING OFFICER: Okay. Mr. Piotrowski,	4 to define the spacing unit down to a quarter-quarter
5 do you have a rough estimate of how much time you would	5 section level?
6 need.	6 A. I don't recall that wording.
7 MR. PIOTROWSKI: I may or may not ask one	7 MR. PIOTROWSKI: Thank you. That is all.
8 question.	8 THE HEARING OFFICER: Thank you, Mr.
9 THE HEARING OFFICER: Okay. So let's go ahead	9 Piotrowski. Do we have anybody from the public here
10 and power through your four or five questions and Mr.	10 that wants to provide public testimony, Mr. Piotrowski,
11 Piotrowski's maybe one question. And then we'll break	11 on behalf of your client CAIA? Did you want to speak?
12 if necessary.	12 MR. PIOTROWSKI: No. I do not want to speak
13	13 on behalf of the client. In fact, I understood the
14 REDIRECT EXAMINATION	14 evidentiary portion of this hearing will be over at 5:00
15 QUESTIONS BY MR. MAROTZ:	15 p.m. I'm already well past my next appointment. Are we
16 Q. So, Mr. Thum, spacing units, as you understand	16 simply continuing the hearing into the public section?
17 them, describe an area on the surface; correct?	17 In the past these have been separate proceedings.
18 A. That's correct.	18 THE HEARING OFFICER: I just assumed that we
19 Q. And oil and gas reserves are beneath the	19 were going to roll into the public portion of the
20 surface	20 proceedings to the extent the public could join us at
21 A. That's correct	21 this point in time since the evidentiary portion went
22 Q. So is it, in your training, experience, and	22 long.
23 education, is it possible to know with any level	23 MR. PIOTROWSKI: Well, I have nothing to add
24 certainty the boundaries of a subsurface reservoir that	24 in the public section.
25 would allow you to draw a meaningful line on the surface Page 151	25 THE HEARING OFFICER: Are you here to testify $\begin{gathered}\text { Page } 153\end{gathered}$

39 (Pages 150-153)

[\&-1:00]

\&	1,932 81:3	1.32. 82:15	12,000 22:21
\& 2:10,11 3:2	1-10 20:1 25:24	1.33 81:3	120 3:18 98:11
$4: 2$	26:4,6 27:3,7	1.4 80:11 93:6	122 98:11
0	27:11 29:17,19	93:	1254 98:10
	29:21 30:8,13	1.42 95:4	1294 60:12
000 80:13	30:19 31:9	1.420 80:10	1296 30:7,7
01 1:8 4:4,9	32:11 34:23	1.425 80:18	13 1:18 69:20
5:11 8:10 9:10	35:13 36:12	82:2	97:18
28:14 49:6,22	50:4,20 51:7	1/2 139:17,18	1388 58:6
65:1 68:6	54:24 56:2,17	1/4 1:6 19:22	59:17
97:17 111:19	57:24 58:23	19:22 139:18	141 3:19
111:21 112:8	60:19 61:11	139:18,19	1487 2:13
114:2,4,13	69:22 70:22	144:2,3 146:8	15 49:6 98:13
138:22	71:1,8 72:19	146:25	101:16 102:3
01-001 1:6 5:10	73:2 74:2,14	10 1:8 3:5 5:7	102:12
02 4:5,10 8:12	75:1 77:13,14	19:23 144:3,7	151 3:20
8:16 112:8	80:23 81:9,13	10,000 22:21	152 3:21
115:2,22 116:4	93:22 98:14	100 39:24	16 49:22
116:20 117:3	100:2,11	57:15 60:13	102:12 139:17
121:17	101:16 114:16	81:5 89:1	139:18,19
03 4:11 116:18	115:8,11,15,18	103 3:11	160 105:10
117:7,10,15	116:25 117:2,8	104 3:12	17 3:8 28:14
120:22 121:22	118:11,24	108 3:17	29:1 65:1
1	119:11,17,19	11,000 118:4	17th 154:8,9,22
1 32:23 34:7,22	121:8	11-075-20032	154:24
34:23 35:5,12	1-11 27:9 75:10	115:9 116:25	18 68:6 97:18
62:12 63:3,4	1-13 114:14	1109 157:23	98:22
72:18	1-14 26:5	1139 61:5 63:6	19,869 118:3
1's 34:9,9	1.02 82:15	98:7	1902 25:15
1,000 29:25	1.186 60:9	114 4:9,10	1903 25:15
40:23	1.2 26:12 100:4	116 4:11	1981 109:6
1,100 30:3	101:8,9 118:2	1180 98:9,17	1983 17:18
1,200 30:3	1.209 59:19	1190 98:9	18:1 109:7
1,388 58:9	1.3 75:3	$\begin{array}{r} 12 \quad 26: 8 \quad 61: 12 \\ 98: 13 \\ 101: 16 \end{array}$	1:00 5:14

[2-79]

2	35:18,23 61:19	55:5 62:11	5,432 94:1,2
2 32:24 34	82:7 84:15	64:9,10 89:24	$\begin{gathered} \mathbf{5 , 4 3 4} \quad 122: 3 \\ 123: 11 \end{gathered}$
34:22 35:5,15	$\begin{aligned} & \text { 104:2 112:5 } \\ & \text { 124:15 142:24 } \end{aligned}$	4	
62:16,16,20,22		4 152:25	$123: 11$ $\mathbf{5 , 4 4 2}$ $\mathbf{5} 51: 22$
97:21 147:19	$143: 4157: 25$ 3 3 $\quad 34 \cdot 10,10$	$\mathbf{4 , 0 0 0} \quad 81: 4$	5,500 81:19
2's 34:9	$\begin{aligned} & \text { 3's } \quad 34: 10,10 \\ & \mathbf{3 , 0 0 0} \quad 40: 6 \end{aligned}$		122:14,19
$\begin{gathered} \mathbf{2 , 0 0 0} \quad 27: 3 \\ 40: 24 \end{gathered}$	$\begin{gathered} \mathbf{3 , 0 0 0} 40: 6 \\ 67: 14 \end{gathered}$	$\mathbf{4 , 4 0 0} \quad 81: 682: 3$	50 98:8 155:24
2,150 58:8 81:1	$\begin{array}{ll}\mathbf{3 , 4 0 0} & 58: 10 \\ \mathbf{3 , 5 0 0} & 58: 10\end{array}$	$\begin{gathered} 40 \quad 17: 2598: 8 \\ 98: 16 \end{gathered}$	$\begin{array}{lc} \mathbf{5 0 s} & 24: 14 \\ \mathbf{5 : 3 0} & 156 \cdot 3 \end{array}$
$81: 4$ $20 \quad 86: 795: 24$	$\begin{array}{ll}\mathbf{3 , 5 0 0} & 58: 10 \\ \mathbf{3 , 5 9 0} & 115: 5\end{array}$	$400 \quad 40: 23$	5.30156 .3
$\begin{aligned} & 20 \quad 86: 7 \text { 95:24 } \\ & 102: 3 \end{aligned}$	$\begin{aligned} & \mathbf{3 , 6 0 0} 58: 10 \\ & 89: 14 \end{aligned}$	$4000 \quad 120: 25$	6,000
20,000 26:13		121:4,12,22	6,100 38:24
200 1:20 30:5	$\begin{array}{lll}\mathbf{3 , 7 1 0} & 116: 21 \\ \mathbf{3 7 5 0} & 115.5\end{array}$	$\begin{aligned} & \mathbf{4 1 - 3 1 7} \quad 130: 21 \\ & \mathbf{4 5} \quad 47: 3 \end{aligned}$	6,200 38:24
2012 19:15	$\begin{array}{ll} \mathbf{3 , 7 5 0} & 115: 5 \\ \mathbf{3 0} & 98: 16 \end{array}$		640 92:5,9
21:13 113:11	$\begin{array}{\|l\|} \hline 30 \quad 98: 16 \\ \\ 109: 10 \\ 155: 1 \end{array}$	$\begin{array}{lr} \mathbf{4 5} & 47: 3 \\ \mathbf{4 7 - 3} & 110: 3 \end{array}$	105:12,13
2013 22:9		$\text { 47-317 } \quad 124: 13$	123:24 124:4,5
2014 22:10	$\begin{array}{cc} 300 \quad 64: 9 \\ 114: 16 \end{array}$	$\begin{aligned} & 125: 10,17 \\ & 142: 24 \text { 143:12 } \end{aligned}$	124:18 125:4,7
2015 22:10			126:1,15
2016 108:25	$\begin{gathered} \mathbf{3 2 0} \quad 28: 2477: 7 \\ 77: 9 \text { 92:2 } \end{gathered}$	$\begin{aligned} & 142: 24 ~ 143: 12 \\ & 147: 19 ~ 148: 3 \end{aligned}$	128:17 129:5,6
2022 118:6		152:25	130:21 133:19
2024 1:6,18	96:10 97:20	$\begin{array}{ll} 471 & 1: 24 \quad 157: 2 \\ 480 & 114: 14 \end{array}$	$\begin{aligned} & 133: 25 ~ 134: 11 \\ & 141: 14 ~ 143: 15 \\ & 143: 20 \end{aligned}$
112:6 118:6	116:17 126:1		
157:16,25	$\begin{aligned} & 126: 16128: 17 \\ & 131: 15 \text { 133:25 } \\ & 134: 2 \end{aligned}$	5	
2024-0gr 5:10		$\begin{array}{\|l} \mathbf{5} \quad 1: 85: 8 \\ 125: 17 \\ 130: 22 \\ \mathbf{5 , 0 0 0} \quad 27: 12 \\ 38: 3,8 \\ \mathbf{5 , 3 0 0} 30: 12 \\ 81: 19 \\ \mathbf{5 , 3 0 6} \quad 81: 24 \\ \mathbf{5 , 4 0 0} 81: 19 \\ 123: 17 \end{array}$	
220 157:23	$\begin{gathered} \text { 134:2 } \\ \mathbf{3 2 2 4 5} \quad 157: 20 \end{gathered}$		7
23 60:10	34 40:6		$\begin{array}{ll} \mathbf{7} & 3: 4 \\ \mathbf{7 , 0 0 0} & 38: 25 \\ \mathbf{7 0} & 98: 18,20 \\ \mathbf{7 0 s} & 24: 16 \\ \mathbf{7 9} & 3: 9 \end{array}$
$\mathbf{2 4 - 3 2 0} \quad 1: 8$ $\mathbf{2 4 - 3 2 0}-0 \mathrm{~g}$ $5 \cdot 11$	35 40:7		
$\begin{aligned} & \text { 24-320-0g } \quad 5: 1 \\ & \text { 24th } 157: 16 \end{aligned}$	$350 \quad 40: 23$		
$\begin{array}{ll} \text { 24th } & 157: 16 \\ \mathbf{2 8 6 4} & 2: 21 \end{array}$	$3750 \quad 121: 10$		
3	32 $22: 11,1523: 11$		
3 32:25 33:2,2			
33:3 34:7,13	35:11 50:18,19		

Page 2
[8-addendum]

[adding - answer]

adding 39:4	affects 133:9	amount 25:2	135:18
addition 5:23	afternoon	55:4,5 66:7	analogous
116:12 117:22	142:3	72:9 73:12	37:20 40:21
additional 12:2	ag.idaho.gov	149:23 154:25	analogy 22:12
17:19 30:9	2:8	amplitude 42:7	37:21 54:25
32:20,20 48:22	agcy 1:5	42:9,11,11	65:20 101:18
85:14 107:5	aggregating	45:4,10,16	analyzed 119:8
111:17,23	89:18	48:21 54:8	angle 47:4 62:2
126:13,13	ago 95:24	56:9,16,18	62:3
address 127:17	agree 123:9	59:12,23,24,25	angles 34:14
addressing	124:2 134:25	61:2,3,9 62:22	44:18
112:5	135:9,17 141:6	63:11,17,17	annotated 29:1
adjacent 8:18	144:4 148:7	64:4,12,16,23	62:19,21 63:5
9:3 11:6,8,13	agreement	67:4,9,14,15,16	annotation
13:20,25 14:15	130:13	67:17,18,19,22	53:16 61:22
15:20 59:15	agrees 43:18	68:3,13,13,25	62:16
77:13,24,24	144:12	69:3,6,12	annotations
78:4,8,9,24	ahead 14:7	71:11,13,15,16	59:18
99:13 102:21	77:4 85:1	71:18 72:4	anomalies 75:8
adjusts 46:18	151:9	74:19,20 75:8	anomalous
46:24	aid 76:16	77:9 83:2,3,4	102:5,8
administer	air 57:1,3	83:13 84:4	anomaly 74:19
124:3,9	106:11	86:14,15,15,16	74:21
administered	allow 77:3	88:5 90:24	answer 13:1
124:7	151:25 152:5	91:23 93:3	14:6 15:11,15
administrative	allowed 106:7	96:8 98:15	26:16 36:16
5:10 6:8,9	125:10 127:9	99:5,9 101:24	39:17 59:11
144:20	allows 22:7	102:15 103:4	77:4 78:1 86:1
administrator	25:3,9 55:7	111:23 119:14	86:3 87:6,10
132:5	84:19 153:3	134:23	87:12 89:25
admission 5:17	amend 105:25	amplitudes	96:22 100:9
advantage	amendment	43:6 80:4	126:3,6,19,20
111:4	125:19,20	83:11 87:24	133:15 134:18
affect 127:2	130:20,22,23	88:1 90:22	144:16 148:6
129:23 130:2		97:2 99:9	148:12

[answered - areas]

answered 14:3	20:8 94:12	approved	27:17 28:4
85:13 99:19	109:21,23	27:23 30:16	30:17,17,24
answering 87:5	110:1,3 111:13	75:13 119:4	31:22 35:21,22
103:6	112:5,17	123:1 126:15	38:15 40:17
answers 85:24	113:18 114:24	130:10 134:13	41:18 49:15
anticipation	115:21 118:15	139:14 140:9	50:19 51:25
26:19	118:18 123:17	140:11,12	52:16 53:10
anybody 134:8	127:15 128:7	approves	56:16 58:1
153:9 154:12	applied 129:20	134:10,11	59:8,8,9,10,25
anybody's	140:10	approving	60:12 61:2
134:14	applies 143:9	134:5	62:1 65:4,6
anyone's	146:20	approximate	67:18 69:7
129:23 130:2	apply 75:17	67:21 81:2	70:10,22,23,24
anyway 147:15	83:23 98:25	90:18,19	71:5,5,6,10,12
apart 40:2	140:19 143:7	approximately	71:21 72:13
apologize 35:7	145:4	26:8 60:13	75:3,6,6,7 76:5
54:25 122:15	applying 94:20	82:3 86:7	76:7,16 78:16
apparent 53:7	appointment	108:25 113:11	79:16 82:22
74:18	153:15	115:4,5 116:21	83:9 84:14
appearances	appreciate	116:22 118:2,3	86:21 88:3
2:1	141:23	118:4 123:11	94:14 96:2,4
appearing 2:19	appropriate	aptitude 42:7	99:16 102:17
apples 84:20,20	67:10 105:11	arbitrarily	102:24 103:4
applicant 1:12	111:10 119:22	44:1	104:5,7 105:12
5:9,21 7:3,8	123:2,10	arbitrary 29:6	113:8 114:4,12
107:6 118:22	127:15 128:8	31:4,7 35:25	137:7,8 147:15
119:7 125:3,9	129:14,20,25	43:25 44:10	150:12,13
143:23 144:6	133:12 135:12	73:9 80:16	151:17
146:4,5,11	136:2 140:20	area 4:97:25	areal 96:7
150:10	152:21	9:9 10:17,22	102:14,23
applicant's	appropriately	19:14,21 20:10	areas 22:17,18
110:12 111:9	76:6 95:20	20:21 21:1,2	39:12 41:24
application 1:3	152:4	21:10,10 22:3	79:18 96:16,17
4:4 5:5 8:7,10	approve 134:12	22:11 23:16,23	96:20 102:9
8:16,23 20:3,7		26:2 27:1,2,9	104:7 110:24

[argue - b]

argue 12:19	associated	authorizing	51:22,22 52:1
arguments	71:19 72:21	143:5	52:17,17,24
13:11	79:21 93:12	automatically	53:16,25 54:20
arrow 53:4	101:6,11,21	45:15	55:19 57:13
arthur 108:16	assume 35:5	available 23:24	58:1 60:17,23
asked 14:2	52:15 78:12	37:12 111:1	61:4 62:13,14
32:19,22 48:21	95:1 125:18	115:13 131:4	62:15 63:1,19
52:7 59:8 67:9	146:3	131:11	64:5,7 65:16
73:21 92:8	assumed 79:2	average 15:8	66:10,11 67:5
100:10 105:20	153:18	38:25	67:21 68:3,10
111:21,24	assumes 43:10	avo 72:3	69:19,21,23,24
123:3 130:1	assuming 12:25	avoid 125:21	70:8,11 72:12
144:12 145:5	27:21 124:24	126:1,4 127:13	$72: 2273: 23$
146:2 148:2,18	assumptions	130:24	74:8 75:5,14
149:10	86:8	avoids 126:8	75:16 76:6,11
asking 12:17	atmosphere	aware 21:14	77:15,18,22
13:1,5,10	106:4	76:23 92:4,6,8	78:18 79:16
18:21 85:25	attached	92:11 103:22	80:3,5,25
87:9,16 95:8	113:18	104:19 126:7	81:12 82:6,23
105:22 125:3	attachment	140:24 141:2,9	83:10 85:4,8
133:22 137:10	97:18	141:13,17,18	85:16 88:12
137:21,22	attempt 155:22	152:20	89:4 90:18
141:18 144:21	attempted	b	93:5,13 96:21
$144: 22147: 24$	149:3	b 4:1 20:23	97:24 98:3,7
147:24 148:3,8	attention 33:19	$25: 2126: 7,12$	98:10,18,25
aspects 110:9	attorney $2: 3,4$	$26: 20,2427: 4$	99:5,6,8,14,23
assessment	5:22,24 6:3	$27: 7,2028: 12$	100:3,14 101:2
123:12,14	157:13	30:9,18 31:6	101:5,15 102:9
126:14	attribute 87:22	$31: 1032: 24$	102:10,19,23
assessments	attributes 72:3	$34: 835: 14,16$	114:17 117:1,5
130:15	90:25	$35: 17,18,22$	117:9,14,16,20
assigned 5:12	august 157:25	$40: 542: 15,15$	117:22,23,25
assist 112:1	authorize	$42: 18,2244: 15$	119:16 121:7
125:20 130:23	125:19 130:20	$46: 348: 2,24$	123:8 124:15
154:18	130:22	$49: 14,18,21$	128:4 133:18

Page 6
[b - bid]

$135: 11,15,21$	$46: 1981: 12,12$	basin $20: 17,17$	believe $7: 4$
$143: 12144: 5$	$81: 14,24$	$21: 21,2422: 2$	$76: 1577: 5$
146:10,10	base $44: 2456: 8$	$24: 14,2225: 15$	$78: 1779: 25$
bachelor $17: 17$	$56: 1992: 19$	$27: 546: 18,23$	$81: 1991: 12$
$109: 5$	$93: 2498: 8,12$	$46: 2355: 7$	$95: 2596: 10$
back $8: 821: 6$	$98: 17$	$60: 765: 18$	$97: 19101: 2$
$23: 125: 14$	based $20: 9,16$	$70: 1074: 15$	$105: 5123: 2$
$28: 9,2030: 22$	$22: 426: 21$	$75: 1102: 13$	$124: 7131: 23$
$31: 2037: 5,9$	$37: 1655: 19$	$103: 24104: 4$	$132: 13,16$
$37: 10,17,19,25$	$57: 2360: 8$	$110: 19,22$	$133: 24134: 8$
$38: 6,939: 16$	$67: 2276: 3,13$	$111: 10120: 1,3$	$134: 14135: 5$
$42: 2545: 18$	$78: 1385: 8$	$131: 6135: 7$	$135: 12,13,23$
$47: 1548: 12$	$88: 5,2189: 8$	basins $19: 8,9$	$136: 14,19$
$53: 355: 24$	$90: 1492: 22$	basis $24: 10$	$138: 15,20$
$64: 665: 16,19$	$93: 8,9,12,21$	$51: 1155: 2$	$139: 16140: 16$
$66: 18,2169: 2$	$96: 4,7,997: 19$	$105: 25154: 15$	$140: 17,20$
$69: 1070: 14$	$100: 2,15$	bc $118: 8$	$154: 16$
$71: 2,2073: 17$	$110: 13112: 19$	bcf $100: 5101: 8$	bend $39: 11$
$77: 1,281: 23$	$113: 15118: 1$	bcfg $118: 8$	$41: 21,2148: 7$
$82: 184: 3$	$118: 15,21$	bearing $57: 7,17$	beneath $151: 19$
$87: 2189: 12$	$119: 24120: 1$	$57: 2159: 14$	benefit $58: 14$
$93: 695: 19$	$122: 9128: 6$	$100: 19101: 5$	best $79: 1983: 8$
$98: 2499: 2$	$145: 15146: 7$	$101: 11,18$	$85: 6,1586: 19$
$107: 23133: 6$	$146: 13150: 9$	bed $41: 15$	$87: 1891: 5$
$142: 3145: 6$	$152: 3$	$109: 13$	$93: 197: 22$
$148: 13$	bases $105: 23$	began $23: 25$	$104: 8131: 14$
background	$105: 24$	beginning	$142: 20157: 11$
$17: 16$	basic $27: 25$	$126: 9$	better $33: 24$
bad $15: 747: 5$	$28: 19$	begun $73: 25$	$36: 1911: 19$
bar $67: 12$	basically $37: 7$	behalf $5: 20$	$111: 22154: 17$
barlow $26: 4$	$38: 741: 9$	$6: 16153: 11,13$	beyond $67: 2$
barrels $26: 14$	$50: 2552: 22$	$154: 1$	$83: 1296: 17$
$118: 3,4$	$53: 956: 13$	behavior $102: 5$	$103: 6131: 3$
basalt $25: 13$	$65: 2570: 24$	$102: 8$	bid $23: 18$
$27: 1243: 15,16$	$82: 19,2291: 24$		

[big - called]

big 56:23 57:1	bottom 30:14	60:6	83:1,8 85:2,3
61:6 122:13	30:16 31:8	boxes 29:9	87:17 88:23
bigger 129:11	32:16 39:10	break 49:1	90:20 93:6,7
billion 26:12	40:25 43:3	107:18,18	93:18 96:2
101:9 118:3	50:17 54:15	150:23,25	99:12 114:15
bin 29:9,10	68:2 81:6	151:11	134:22 135:2
bins 39:22	121:1,12 122:5	breaking	135:19 152:25
bit 38:22 39:16	bought 26:18	150:21	caia 2:17 6:17
42:17 49:21	137:11	bridge 21:16	153:11
52:18 58:11	boundaries	24:17 69:19	calcium 39:3,4
84:10 85:11	35:18,24 49:16	brief 103:18	calibrated 26:5
87:23 88:7	62:8,17,24	briefly 17:15	call 7:8 10:10
96:24 103:2	63:23 67:21	18:2 20:13	17:2 22:22
105:14 115:24	90:23 93:2	21:8 24:5 28:8	26:5 27:2,5
117:11 121:2	136:15 148:10	28:16 33:21	29:5 33:20
150:22	151:24 152:23	56:21 99:22	66:1 70:7
black 29:20,21	boundary 29:2	brown 7:1,2	71:10 73:22
39:13,13 41:7	29:19 35:20,25	78:20 80:1	80:14,15 98:9
41:24 45:1	36:2,7,8 37:7	83:12 135:19	98:16 100:14
55:21 63:4	49:25 50:2,8	139:3,5	100:14,19
64:7,8 68:9	53:8 59:22	bubble 72	107:9,10,14
blew 68:12	62:7,20,21	bw 118:8	108:5 137:4,4
blocks 155:13	63:12 70:25	c	139:4 150:4
blue 29:18,18	71:17 74:6	c 5:1 $28: 12$,	called 22:5,18
53:24 54:4	76:1 78:9,21	$28: 17 \text { 29:1 }$	22:19,20 23:3
67:12	84:7 91:16		24:17 25:21
blues 67:13	96:18 99:13	$33: 223$	26:9 27:9 30:3
board 15:14	114:9 136:7,9	35:2 36:4	30:9 37:14
22:13 134:10	136:18 137:5	$47: 1548: 12$	39:3,20 41:8
body 105:6	139:2 140:8	$61: 15,17 \text { 64:7 }$	42:6,9 43:24
106:15	148:25 149:9	64:25 66:21	44:6,20 45:7
boise 2:7,14,22	bounds 136:25	68:21 69:2	45:11 46:17,25
108:20 157:24	137:3	$70: 1571: 21$	49:16,18 51:4
borders 138:13	box 2:6,21	77:6 78:6	51:9,20 57:9
	29:18 46:11,12	79:11,14 80:2	66:25 69:19

[called - classes]

72:3 80:16,24	causes 37:8	changing	70:14 73:19
82:20 84:12	105:3	129:22	76:22 77:25
91:15 93:11	caveat 85:18	character 56:7	79:3 85:13
calling 10:16	86:2,3,4 87:6	68:3 69:11	103:16,18,21
calls 76:18	cc 1:6 5:10	70:9 73:1 75:4	104:10 106:19
capable 113:16	center 82:23	86:17,23 101:7	106:23 107:6
carbonate 39:3	86:22	101:10,12	120:10,13
39:4	centered 77:10	102:10,17	141:24 142:2
career 18:18	84:16 103:3	characteristics	142:13,23
carefully 22:16	central 42:19	101:15	144:12,15,25
carried 27:1,2	certain 23:2	characters	145:7,10 148:2
carry 27:19	89:22	101:20	148:12,15,16
case 1:5,7 5:11	certainly 12:19	charge 61:8	149:6 150:17
8:8 14:11	34:6 56:23	91:3	155:4,5,9
25:20 27:17	85:13 100:1	chart 80:15	chrsitian 3:11
39:5 46:19	134:20	121:1	circle 137:12
47:10 48:18	certainty	charts 92:22	137:13,16,18
51:3 58:23	151:24	chess 22:12	circular 137:23
62:8 66:4	certificate	chessboard	148:10
78:13 82:10	157:1	40:9	city 1:19 5:14
84:25 94:12	certificates	choice 148:1	16:4,5,6 154:4
100:18 119:11	109:3 155:13	choose 11:5	clarification
123:1 125:25	certified 4:5	88:13 89:6	111:18
126:8,15 127:8	8:12,15 157:2	129:11	clarified 35:4
128:16 129:11	certify 157:3,12	chosen 95:14	154:16
131:16,20	cetera 136:25	christian 2:12	clarify 13:4
132:14 139:11	chance 24:21	3:4,8,19 5:20	32:4 38:10
152:21	change 86:11	5:23 6:18,21	51:5
casing 30:4,4	86:19,23	7:2,7,8,18 9:18	clarity 36:3
catch 121:3	105:24 106:3	12:16 14:2	41:20 45:8
categories	113:24 128:3	16:16,19,25	49:7 52:3
15:16,23	128:16	17:2,9 18:14	56:20 58:13
cause 7:15 17:6	changed 82:19	18:20 32:3,7,8	64:24
108:10 126:18	82:20	34:4,6,11,16,19	classes 17:19
133:21		35:7 49:4	

[clay - condensate]

clay $25: 12$	college 18:4,23	comment 5:15	completeness
51:15,16 52:21	color 67:12,17	106:16 151:1	110:4
56:10 66:3	colorado 19:13	154:6,9,10	complex 50:13
clear 14:5	colored 39:12	commentary	complexities
32:22 42:23	66:23	92:9 142:7,10	22:1
66:19,25 78:7	colors 29:7	commercial	complexity
100:16 114:7	30:22 33:22	24:21 73:12	64:13
clearly 62:23	44:16,23 67:11	78:18 137:1	complicated
64:20 77:10	67:13 88:5	commission	60:25
client 144:25	column 80:9	134:10 154:8	comply 145:19
145:1 153:11	combination	157:25	component
153:13	28:1 56:4,13	commission's	149:20
climbing 56:7	68:24,25	5:22	compressional
59:21	116:10 117:21	common 22:15	41:10,11
climbs 56:18	143:16	35:20 37:21	comprised
clock 155:1	combo 115:7	60:15 64:2	20:23 76:10
close 67:5 98:5	116:4,24	70:25	concentrate
111:5 155:1	117:16	commonality	102:24
closed 154:11	come 25:11	86:13,21 87:24	conclude 97:20
closest 119:9	28:20 37:19	commonly	131:19
closing 154:5	38:6,9 39:23	116:7	concluded
closings 154:20	43:15 71:2	companies	156:3
coal 109:13	89:25 122:21	106:10	conclusion
code 110:3	comes 25:3	company 10:12	20:15 76:19
124:13 125:17	37:5,25 46:5	21:12,16 94:11	88:11 122:22
130:21 142:25	53:3 66:21	comparable	127:14 131:9
152:25 153:1	125:9 128:1	104:25	131:12,14
coextensive	comfortable	comparison	conclusions
137:9,14	154:5 155:17	84:20	20:13 72:11
collect 22:18	coming 41:16	complete 26:10	84:1 134:25
collected 20:20	50:23 54:12	77:18 110:8	135:5,8
44:25	59:17,19 61:9	completed	condensate
collectively	73:13 89:18	101:8 113:11	20:21 26:14
84:18,19	121:19	117:25	100:18 118:4

[condition - correlative]

condition 57:25	119:25 140:18	continuous	82:8 83:14
conditions	consistently	46:6 48:7,17	92:2 94:15
109:19	64:3	contours 106:1	95:15 96:6
conducted 19:2	consisting 1:6	contrast 56:10	97:24 100:20
conductor 30:5	5:6124:18	control 44:5	114:10,20,21
confidence	143:15	106:12	115:13,17
24:20 83:24	constructed	convention	118:9,13,14
84:1 87:25	20:10 115:23	41:23	121:23 122:12
88:1,3 90:21	117:10 135:4	conventional	123:25 124:25
90:23 102:5,14	consulting	85:17 110:23	125:5,8 129:3
confidently	19:17	113:12	135:22 136:20
96:23	contact 43:15	conventions	136:21 139:2
configuration	53:5 55:22	35:10	140:16 143:2
50:9 119:1	56:3,14,22	convince 63:25	144:1 145:21
150:12	57:10 58:5	cooler 88:5	146:12,18,23
configurations	59:16 60:7,9	copy 155:3,4,7	147:17 149:24
143:1	60:12,18 81:10	core 102:24	150:8,16
confirm 125:1	contain 62:6	corner 61:20	151:17,18,21
153:2	contained	61:21 83:11	152:12,13
confirmed	62:24 63:1	97:3 111:25	157:10
56:14 69:10	contains 110:1	112:1 135:14	correctly 81:9
confusion 35:8	116:13 117:23	135:20	correlate 28:2
consequently	135:20	corners 22:14	31:4 34:8
110:24	content 110:4	83:13	73:14
conservation	context 105:21	correct 8:5	correlated
124:9 149:17	105:21	9:14 10:18	68:20
consider 110:6	continue 35:10	14:21,22 16:9	correlating
considerably	75:20	25:22 31:18	75:6
88:13	continues	33:13,18 34:11	correlative
consistent	37:11	38:13 43:4	125:22 128:18
59:14 63:23	continuing	49:25 55:18	128:20,22
64:12 77:12	17:21 53:22	59:1 60:24	129:1,10,23
80:5 113:7,9	54:4 72:23	68:17,18,19	130:2,9,15,25
113:12 114:24	100:5 153:16	72:878:11	134:14 146:3
115:1 119:16		79:25 80:13	146:24

[corresponds - days]

corresponds	covering 117:9	curve 52:9	$43: 10,1144: 24$
152:1	covers 23:16	72:23,24 73:1	45:1 47:5
cost 74:23	82:16 121:7	75:4	50:19 53:8,21
count 40:1	create 86:18	curves 51:4	55:5 57:23
counted 39:23	129:17	78:22 116:5	63:6 64:11
countless 44:11	creating 35:7	117:17	71:25 72:5,10
64:1,21	91:3	cuts 36:10	78:14 79:20
country 110:24	cropped 31:23	cutting 142:15	81:5 82:21
149:3	cross 3:5,9,10	d	85:8,20 86:5,7
county 1:9 5:8	3:18,19 10:1	d 3:1 5:1 27:20	88:14 89:9,16
8:24 14:20,24	36:6 39:1 44:7	d 31:12,12 33:5	89:24 90:15,16
15:6,13,14,24	44:7,9 59:22	$33: 9,18 \quad 34: 8$	92:22 93:8
15:25 16:1,3,7	68:1 72:20	61:24,25 62:9	96:5 97:20
113:10	97:12 120:19	63:2 67:8,24	99:24 109:16
couple 21:20	142:1 144:22	68:5 69:11	109:18,18
29:4,5 39:7,10	crosses 35:25	70:5 82:7	110:9,11 111:2
69:20 150:24	36:1 46:16	84:15 93:18	112:16,20
course 19:13	csr 1:24 157:2	97:18 104:2	115:18 116:6
23:12,25 51:7	157:21	114.15	117:4,18 118:7
courses 17:20	cubic 26:13	$\operatorname{dam} 30: 9$	119:23 120:2
court 7:10 18:6	101:9 118:3	dark $65: 4$	121:2,5,13,19
18:17 48:25	current 25:1	$67: 12$	122:21 131:4,6
70:2 79:22	96:5 108:21	darker 41:25	131:11,11,13
83:18 84:9	114:23	dash 29:18.21	135:3,6 152:3
88:16 90:5	currently 19:16	$62: 18,2164: 7$	date 1:18
100:6 122:15	75:11 77:16	$62.18,21$ 64.8 67.22	dave 6:23
125:13 133:5	108:17,19	77:7	17:10 32:8
138:6,10 145:6	119:19	dashed 35.19	34:24 49:4
cover 29:4	curser 28:24	35:24 49:14	73:19
76:10,11 77:18	49:7 52:23	$50: 3,7114: 9$	david 2:13 3:7
97:22 105:11	53:10 54:3	139:1	17:2,4
113:20	56:16 61:18	data 19:3 20:18	day 39:24
coverage 23:7	62:18 70:24	$22: 6,1428: 1$	155:1 157:16
covered 30:11	78:20,23 79:14	$30: 2331: 17$	days 155:16
59:9	82:16 103:4	36:21 39:8	

Page 12
[deadline - describe]

deadline	75:20,25 77:17	68:9 77:6	146:1
154:23	93:15,23 94:4	denotes 34:23	depict 114:3
deal 38:19	122:7	dense 42:13	115:3 116:19
55:12	deepest 121:21	43:16	depicted
deals 142:25	default 123:25	denser 41:14	114:20 115:6,8
decide 137:22	124:3,5 130:21	density 25:8	116:23,24
decider 6:12	143:8,19	53:14,18 82:21	117:7
decision 11:11	145:15 146:16	101:11 115:7	depleted 77:17
11:14,15 13:21	define 132:21	116:4,23	deposits 83:10
13:23,25 14:1	136:3 153:4	117:16 121:17	depth 4:10,11
14:8,10 134:4	defined 104:23	143:6	20:12 22:15
140:18 155:2	110:2,7	departing 53:2	27:13,15,16
decisional 6:11	defines 133:11	department 1:1	30:11 38:20
declaration 8:7	definition	2:2 3:15 4:8	39:6 46:22
20:6,9,14 28:8	106:14,16	5:4 6:5,6 108:6	57:6 58:4,4,7
28:13,17 33:23	128:22,25	108:20,22	58:11,18 59:3
49:5,15,22	149:16	109:8,22 110:5	60:2,10 72:15
64:25 79:12	degree 47:4	111:8 113:21	73:10,23 75:20
95:23 97:17	109:5	114:1 118:23	80:2,21 81:24
98:23	degrees 109:2	118:24 119:3,8	92:14 93:8
decreased	deliberately	124:10 125:11	94:3 115:4,5,6
149:21	55:3	125:19 130:22	116:20,21,22
decreasing	delineated	131:15 132:4,5	117:9 121:2,4
68:24	30:25	143:5 147:20	121:13,18,25
deemed 5:18	demonstrate	148:17 152:10	122:1,3,4
deep 47:8 82:10	30:24 44:2	154:8 155:2	123:11
82:12 93:17	60:1	department's	depths 83:9
deeper 26:11	demonstrated	115:13 119:22	95:9,12 123:1
27:3,11,19,20	67:7	departure 42:6	123:6
27:24 37:12,18	denied 129:6	42:10 51:19,21	deputy 2:4
40:10,11,19	130:10	depend 88:13	derive 23:21
43:14 46:2,5	denote 34:13	depending	describe 17:15
50:15,17 65:22	denoted 29:18	38:15 152:11	18:2 21:8 28:8
72:23 73:8,9	32:13 33:10	depends 38:4	34:24 36:18
74:23 75:14,17	35:17 67:19	128:19 133:1	42:22 56:21

[describe - discussed]

102:14 136:22	desire 16:22	77:12 79:1	dimensional
137:6,18,20,23	106:25 107:9	109:12,14	111:5 113:10
138:3,11 141:5	127:13	113:7,13	diminished
147:8 148:24	detail 25:23	114:25 133:12	150:7
151:17	28:10 31:11	deviation 30:21	diminishes
described	42:21 51:21	dies 63:9,11	71:16,19 90:22
49:17,23 53:10	99:2	66:13	diminishment
65:875:15	detailed 95:5	difference 12:4	149:22
76:15 95:20	details 72:7	38:14 86:17	dips 71:22
97:21 99:10	detected	differences	direct 3:4,8,17
136:15,18	115:25 117:13	59:16 99:23	7:17 108:12
137:13,17	determination	different 12:7	144:15
138:3 139:16	67:5 110:10	15:14 23:4	direction 30:1
139:21 140:14	determine 47:1	33:22 34:14	30:2,6 44:11
141:12 144:13	58:3 89:14	39:2,10,11	49:9 62:4
147:15 148:9	110:15 111:8	44:15 47:4	63:18 157:9
148:23	determined	60:18 61:25	directional
describes 21:2	13:15 15:20	62:3,4 65:10	29:22,24 30:21
76:6	52:11 55:3	85:19 86:5,8	50:22 58:24
describing	110:21	86:13,20 87:7	124:16 143:14
136:13 137:8	determining	87:23 88:7,14	directly $8: 1$
description	10:19 72:6	88:20,22 89:17	11:15 116:15
136:8 137:15	112:22	89:21 93:7	118:24
147:3	develop 10:3	102:6,7,15	disagree 148:5
descriptions	29:3 54:5	104:20 137:3	discharging
25:4 148:21	59:24 64:2	143:6,24	106:11
design 109:15	76:12 102:5,13	145:13 147:6	disconnected
designated	134:9	differentiate	48:13
35:23 96:21	developed 21:7	35:2	discovered
designation	3:17 57:24	differently 88:8	110:23
79:14	78:14 91:6	88:9	discovery
designed 23:18	developing	difficulty 14:16	26:19
designing	26:22 103:24	dikes 46:20	discussed 70:15
23:15	development	dimension 37:3	72:9,22 74:1
	19:10 76:17		142:5

Page 14
[discussing - east]

discussing 32:9	drainable 21:3	drilled 20:19	dry 23:10
49:5 54:23	drainage	21:19 22:1	dual 26:6
73:25	126:11	23:22,23 24:1	duly 7:14 17:5
discussion 76:3	drained 76:7	24:2,17,23	108:9
147:2 150:1	91:7 95:21	26:2,2,3,4,7,18	durand 2:18
displacement	96:14,20 105:9	26:20 29:21	6:16
66:19	110:16 120:6	40:11 50:20	dutch 114:14
display 52:8,9	128:13	57:14 58:25	duties 108:24
82:19 121:6	dramatic 56:12	69:19 73:2	dying 63:17,22
displayed	dramatically	75:9 81:13,25	66:25
62:17 82:21	71:16	100:13 102:12	e
84:12	draw 86:10	102:13 113:4,9	e 3:1 4:1 5:1,1
displaying	88:8,9,14,23	114:15 116:9	$114: 13$
122:5	93:7 136:2	117:19,25	earlier 45
distance 38:2	149:8 151:25	122:3 124:17	49.23 67.10
40:4 58:19	drawn 45:8,9	127:23,25	89:12 102:2
59:3 75:13	69:7 89:3	128:4 129:17	$135.5139 \cdot 2$
98:2	90:19 140:2	129:19 132:22	earn 109:3
distances 23:13	150:3	135:16	earth 22:8,13
dit 44:8,8,8,8,8	drill 22:2 27:8	drillers 24:9	22:17,24 23:3
docket 5:9	27:11,24 29:24	drilling 18:24	37:6
document	30:1,5 40:4	23:9 24:6,9,11	easier 18:16
88:12 121:12	43:14 69:18	26:18 27:23	easily 89:3
documented	73:8 74:13,23	29:24 54:19	east 26:3 27:9
70:10	75:13 86:22	73:12,14 75:12	29:16 31:2,13
doing 35:2	87:2 93:17	94:14 100:2,10	33:6,9,15,16
49:10 86:18	94:4 96:20	100:11,20,23	36:11 41:2
131:8 142:16	99:3 100:25	100:25 101:1,1	48:23 61:14,19
dotted 139:7	101:19 105:7	125:21 127:13	61:22 62:8,11
140:4	115:23 117:11	127:18 130:24	$62: 1963: 11,22$
doubled 133:17	127:9,11	134:1,6 145:23	65:6 67:25
downthrown	128:10 129:14	150:5	$69: 20,2570: 11$
47:19,21	129:18 130:5	drive 24:4	70:12 75:5,7
drain 96:4	133:4 146:5	drives 46:20	78:9 80:1
128:8 135:10			84:16 96:25

[east - evaluate]

[evaluated - exhibits]

evaluated	exact 27:13	except 43:7	61:25 62:3,9
123:4,16	69:14 77:8,8	exceptions 92:7	63:2 64:7,25
evaluating	exactly 31:23	excessively	65:16 66:10,11
109:23	33:8 34:17,21	150:3,4	66:18,21 67:8
evaluation	40:20 41:23	excised 80:17	67:24 68:5,6,8
19:11 112:2	50:22 52:2,14	exclusive	68:21 69:2,10
event 40:15	57:15 58:22	155:12	70:5,15,20
43:17 46:15	59:5 62:2	exclusively	71:3,21 72:16
53:7,18 55:21	81:22 152:1	54:16	72:18 74:1,4
56:6,17,18	examination	excuse 55:24	75:2,24 77:6
59:13,13 60:6	3:4,5,8,9,10,11	excused 16:18	78:6 79:11,14
60:8 63:9,11	3:12,17,18,19	106:22	80:2,7,7 82:1,6
63:14,16 64:4	3:20,21 7:17	execute 14:1	82:15,23,24
64:15 68:3,14	10:1 17:8 79:9	exhibit 4:4,5,9	83:1,8 84:3
69:6,6 83:4,6	97:12 103:20	4:10,11 8:9	85:2,2 86:18
84:4,6 85:20	104:17 108:12	9:10,13 28:13	87:17 88:23
88:6,6 90:24	120:19 142:1	28:14,17,25	90:20 93:5,6,7
101:23 152:6	144:22 151:14	29:1 31:6,15	95:7 96:2
events 37:15	152:18	32:5,14,15,22	97:17 98:6,7
45:10 89:17	examine 86:4	32:23 33:4,5,9	99:12 111:19
102:4	examining	33:18,22 34:2	111:21 114:3
eventually	104:6	34:8,22 35:1,2	115:3,22 116:3
94:22 127:9,23	example 25:24	35:5,6,11 36:4	116:19,20
everybody	31:14,16 34:23	36:4,6,18	117:7,10,15
149:4	39:23 44:21	39:25 42:17,18	119:15 120:22
evidence 5:19	45:24 52:10	42:18,19 43:21	120:25 121:16
20:16,18 66:7	58:24 62:7	44:14,15 45:20	134:22 135:2
66:7 93:21	67:23 84:3	46:11 47:12,15	135:19 138:17
113:18 145:4	85:21 96:13	47:16 48:1,12	138:22
152:11	105:10 147:12	48:24 49:5,6	exhibits 5:18
evident 75:25	148:11	49:14,14,21,22	20:11,24 28:7
evidentiary	excellent 50:18	49:24 50:16,17	28:7 31:5,12
5:13 153:14,21	83:7 113:20	50:21 52:1,17	31:15 32:19
154:6,25	116:18	55:19,24 57:13	33:21 34:19
		61:4,15,17,24	51:20 53:4

Page 17
[exhibits - fallon]

57:17 60:25	103:23 109:9	expresses 124:3	fades 68:14
86:18 93:4,5	109:10,14	extend 101:13	69:8
95:4 101:2	110:14 112:20	103:2	fail 46:25
112:8 113:21	112:25 113:6	extended 30:10	fair 14:17,18
114:1 118:16	113:16 148:22	extending 75:6	15:16 72:9
122:7,10	149:1 151:22	extends 32:9,10	90:14 122:22
exist 59:10 95:6	experienced	123:23	129:12
110:25	89:23	extent 13:10,14	fairly $24: 2$
existence 66:8	expert 104:3,8	31:23 84:2	fallon 20:1
112:22	expertise 10:22	85:8 87:2 89:7	25:24 26:3,6
existing 20:1	expires 157:25	89:22 96:7	27:2,7,9,11
21:25 29:17,19	explain 10:10	99:5 102:14,23	29:17,19,21
31:25 32:11	33:22 39:9,15	110:10 153:20	30:8,12,19
35:12 37:1	39:17 41:25	154:24 155:18	31:9 32:11
40:12 44:4	55:2 65:14	extern 6:1,3,10	34:23 35:13
59:15 60:20	67:9 83:25	externs 5:24	36:12 50:4,20
70:22 71:1	131:24 133:9	extracted 29:5	51:7 54:24
72:19 77:13	133:20	extraction	56:2,17 57:24
105:25 114:5	explained 80:7	94:15	58:23 60:19
140:6	explanation	extremely	61:11 69:22
expand 70:19	48:17,18 87:15	22:12 43:16	70:22 71:1,8
expanded 51:1	exploration	135:20	72:19 73:2
expect 28:3	19:10 50:12	f	74:2,14 75:1
expected 57:25	74:15 93:16	fact 20:6 69:17	75:10 77:13,14
expedited	109:12	89:2 90:18	80:23 81:9,13
154:15	explorationist	96:2 123:22	93:21,24 95:10
expense 55:4	48:16	124:7 131:15	98:14 100:2,11
expensive 22:6	explore 26:25	131:19 136:17	101:16 102:10
23:6	43:5 72:16	$138: 17 \text { 140:3 }$	114:16 115:8
experience	explored 27:5	$153: 13$	115:11,15,18
15:11 18:3,22	exploring	factor 127:	116:25 117:2,8
19:10 20:17,17	76:13 104:7	factors 38:19	118:11,23
57:24 76:13	expressed	facts $87: 14$	119:10,17,19
88:19,22 89:8	80:11 85:16	factual 76:22	121:8
89:23 90:15	88:11 135:1	76:23	

[false - followed]

false $90: 12$	faulted $48: 4,5,6$	$122: 3,14,19$	finds $133: 2$
familiar $8: 9$	$48: 665: 4$	$123: 11,17$	$146: 1$
$11: 2012: 24$	faulting $46: 21$	field $4: 919: 2$	fine $34: 297: 15$
$19: 2020: 3$	$46: 24$	$19: 1421: 24$	$155: 19$
$78: 390: 10$	faults $31: 2$	$90: 3,9,9104: 6$	first $5: 207: 14$
$112: 15124: 12$	$45: 18,1947: 3$	$109: 15113: 8$	$8: 617: 519: 4$
$124: 15125: 23$	$48: 1365: 10$	$113: 12114: 4$	$22: 928: 8,22$
$128: 22149: 16$	$68: 21,2496: 19$	$114: 12,25$	$36: 17,2337: 15$
familiarity	feature $64: 8$	$120: 3127: 24$	$40: 1365: 13$
$11: 25$	$67: 693: 3$	fieldwork	$98: 1108: 9$
far $11: 1955: 11$	$101: 24111: 24$	$104: 4$	$113: 10120: 14$
$81: 1784: 24$	$136: 4$	fights $149: 4$	$143: 3$
$91: 1103: 10$	features $39: 7$	figure $12: 1$	fit $91: 2297: 22$
$113: 15129: 21$	$39: 1044: 2$	figures $83: 14$	fits $91: 23$
fast $18: 18$	february $118: 5$	figuring $44: 12$	five $109: 1$
$38: 12138: 9$	feel $20: 1664: 17$	file $155: 15,21$	$151: 2,10$
faster $38: 22$	$102: 21$	filed $50: 24$	$155: 12,21,23$
$39: 5$	feels $118: 24$	$109: 22$	flat $53: 1456: 5$
fault $32: 1$	feet $24: 11,12$	filings $155: 23$	$57: 2,963: 21$
$44: 2046: 16,17$	$26: 8,1327: 3$	filled $56: 25$	floor $7: 7108: 4$
$46: 2547: 6,9$	$27: 1329: 10,25$	finally $111: 24$	$120: 16152: 16$
$47: 11,12,14,18$	$30: 3,5,1238: 3$	$116: 18$	fluid $43: 13$
$47: 22,22,24$	$38: 8,23,24,25$	financially	fluvial $70: 1$
$48: 2,7,9,15,17$	$40: 2,6,21,22,23$	$157: 13$	focused $144: 6$
$64: 15,17,18,20$	$41: 157: 15,16$	find $24: 21$	focusing
$64: 22,2365: 3$	$58: 8,10,10$	$25: 1828: 4$	$133: 18$
$65: 966: 6,8,13$	$60: 1361: 12$	$47: 483: 9$	folks $146: 24$
$66: 16,22,23$	$81: 1,4,682: 3$	$104: 9125: 12$	follow $33: 6,24$
$67: 171: 23,23$	$89: 1493: 25$	$125: 20129: 15$	$35: 4101: 23$
$75: 19,2078: 10$	$95: 998: 8,11$	$130: 23$	$138: 18,20$
$78: 19,20,25$	$98: 11,13,13,16$	finding $69: 23$	$139: 15147: 22$
$79: 13,15,19$	$98: 18,20,21$	$74: 16131: 17$	$150: 24$
$80: 183: 12$	$101: 9,17115: 5$	$131: 22132: 4,5$	followed $5: 21$
$96: 14,19$	$115: 5116: 21$	$132: 7$	$5: 21139: 8$
$135: 18$	$116: 22118: 3$		

[following - gas]

following 12:24	forward 50:25	further 9:18	56:11,14,21
31:12 32:4	100:7 133:6	44:17 52:18,20	57:5,7,9,16,20
33:2,3 63:8,10	found $26: 8$	78:11 81:3	58:5 59:10,14
143:7 148:4	28:3 57:14	103:13,14	59:15,16 60:7
follows 7:15	73:11 93:8	104:13 120:8	60:9,12,16,18
17:6 33:9 51:6	101:16 102:6	157:12	61:8 62:13
108:10	128:19 129:16	future 77:16	63:1,8,21 64:5
foot $24: 10$	131:15 140:13	127:11,20	64:14 65:17,21
51:11 95:3	foundation	130:4,15	66:4 67:21
98:16 122:4	149:5	133:23	68:11 72:6
forecasting	four 8:1 40:21	g	73:7,11,11,12
27:16	40:22 83:13		73:13,14 74:2
foregoing	151:2,10	gained 25:14	74:16 75:2,5
157:3,10	155:16	gamma 25:2,3	75:11 76:10
forget 155:19	fragments	$51: 9,12,14,16$	84:7 85:4,8,16
forgive 99:19	115:23 117:11	51:19 52.21	87:3,19 88:4
fork 65:10	free 16:22	72:24 73:1	88:12 90:18
form 57:7,9	frequency	74:3 75:3	95:6 100:3,18
102:18	22:22 23:3	74.375 .3	100:18,21,22
formation 25:6	friendly 15:10	$99: 15$	101:1,5,9,9,11
100:24 110:20	front 12:6	$1: 4$	101:17,19
111:6 115:24	124:20,25		102:22 106:11
117:5,12	141:19 153:1	$5: 226: 47: 3$	106:14 108:23
118:13 144:4	frontier 27:5	5.22 6.4 10.1617 .23	109:9,12,13
145:12,17	froze 73:15	19:6,8,11	110:18 111:13
146:5	74:11	$20: 21,23 \text { 22:3 }$	112:21 118:3
formations	fruitland 1:19	$24: 12,19,21$	122:14 124:9
27:17 28:2	1:21 5:14 16:4	$25: 19 \text { 26:11, }$	124:17 125:6
113:5	16:5,6		125:21 126:2
formed 26:18	fuhs 1:24 157:2	$30: 24 \quad 32: 24.25$	126:18 129:3,7
27:22	157:21		130:24 131:17
forth 19:3	fulfilled 108:24	$42: 1343: 22$	132:15 133:21
20:14 86:9	full $54: 287: 15$	$53: 5,8 \text { 54:2,7 }$	134:9 135:15
91:2 157:5	108:15	$54: 10,17,20,21$	143:14,19,20
		54:10,17,20,21 56:3,9	149:15,17,19

[gas - going]

151:19	geography	111:2 116:6	49:6 55:14,16
gather 126:13	21:10	117:18 119:6	55:24 59:6,19
gathered 60:11	geologic 17:20	135:6	65:16 68:4
116:6 117:18	25:17 109:18	geophysicist	69:2,16 70:14
general 2:3,4	111:1,9 112:16	17:14,24 88:7	70:20 71:2
5:24 20:23	113:18 118:25	geophysicists	77:4 80:6 82:1
37:18 42:2	119:25 126:22	89:20 103:23	82:6 83:1 85:1
43:20 150:8	136:7 148:25	geophysics	87:21 89:12
general's 6:3	geological	17:19 109:7	98:23 99:2,12
generally 21:6	92:19 109:17	geoscience	120:14 122:7
21:8 38:21	122:20 135:6	21:19,22	131:7 142:3
47:3 65:14,23	geologist 6:24	geoscientist	146:5 151:9
67:20 75:16	17:14,24 19:4	21:12	goes 25:8 33:15
80:1 83:15	88:14 89:3	geothermal	36:11 37:6,23
112:15 137:4	103:23	109:13	46:5 69:13
generate 42:5	geologist's	getting 38:25	80:18 92:25
43:17 57:22	88:21	43:3 53:12	120:10 123:5
generated	geologists	72:7 83:11	131:3
27:13 65:22	89:19	107:17 150:22	going 11:12,23
116:6 117:17	geology 17:17	give 18:14 29:8	12:16 13:9
generates	19:16 21:10	98:2,5,17	18:6,18 23:8
41:14	75:1 90:3,16	given 36:17	25:14,17 29:22
gentlemen	109:6 120:1	38:13 113:14	30:2 31:20,21
21:21	133:23	154:7,23	33:5,6 34:13
geographic	geophone	155:11 157:11	34:13 36:3
91:8,11,21	22:22 41:9	gives 23:6	38:15 39:8
93:2 97:21	geophones 23:5	29:11 40:20	41:9,12,13
110:10 133:11	89:13	glad 51:3	42:5 43:11,17
136:7,9,15,17	geophysical	gleaned 152:6	47:15,16,25
137:5,15	17:21 19:17	go $10: 1914: 7$	48:12 55:17
147:21 148:9	20:19 24:23	22:24 25:1	56:5,9,11
148:18	56:15 57:18	28:7,9,12	58:11,12 61:12
geographically	73:4 89:24	33:25 36:15	61:23 62:3
136:13	99:4 101:4,20	37:2 39:9 40:9	64:6 65:19
	109:17,18	42:25 44:8,12	66:18,21 67:13

[going - hearing]

68:9,16,18	grant 154:21	140:15,15	hayden.martoz
69:2,10,18	granted 75:9	halfway 56:25	2:8
70:3 71:15,20	75:12 127:15	hall 1:19 5:14	hayes 1:16 5:13
72:20 77:3	146:4	154:4	head 26:15
81:2 84:23	graph 80:8,15	hand 37:2	55:16 106:13
85:12,21,24	great 72:22	47:17 53:20	healthy 127:8
87:11 88:6	greater 72:15	80:9 120:25	hear 37:24,25
92:12 98:14	73:23	157:15	38:6 123:19
99:16 101:3,22	green 32:1	happen 30:2	heard 124:7
103:5 105:17	44:16 46:16	94:18 130:5,8	hearing 1:16
106:5,10,13	47:13,22 48:2	130:9	5:3,12,13 6:7
113:23 126:1	48:13 64:23	happening	6:12,18,21,25
127:3,11 128:9	65:8 68:19	74:24 125:2	7:6,10 9:20
130:5,7 137:13	71:23 75:20	happens 46:18	11:21 12:20,21
148:11 153:19	96:18,19	53:25 57:5	13:3,9,14 14:6
154:21	gross 98:16	139:10	16:12,15,17,20
gold 44:23	ground 23:12	happily 132:10	16:25 18:7,10
45:23 51:9	55:10 57:20	happy 120:14	32:3 34:4,7,12
52:3,18 72:24	59:3 105:13	hard 15:11	34:18 35:3
good 15:7 22:7	115:23 117:11	18:7 42:4	49:2 50:25
23:724:19	149:15 152:2	43:16 90:6	58:13 73:17
50:18 52:10	group 21:14	125:14 133:8	76:20,25 77:3
55:5 64:17	grumpy 150:23	hardee 2:11	79:5 95:15
73:674:16	guess 20:25	harder 41:13	97:9 103:11,16
101:21,21	31:12 85:23	41:16 42:16	104:12 106:20
107:19 110:13	86:19	harm 134:14	106:24 107:4,8
111:4 142:3	guessing 131:1	harmon 4:9	107:12,16,20
govern 13:11	guidance	10:9,11,15,16	107:23 113:23
governmental	141:13	10:20 11:6	120:9,15 128:5
124:18 143:16	gw 63:20 68:11	27:2 113:7	132:1,8,12
grader 23:1	h	114:4,12,25	134:10 139:5
gradually		120:2	141:24 142:9
38:24 46:24	half $29: 1636: 8$	hat 32:22	142:13,21
68:14	36:9 40:3,22	hayden 2:5	144:10,19
	41:1 65:6 76:4		145:3,9 148:7

Page 22
[hearing - illustration]

[illustrations - instructed]

illustrations	inaudible 37:21	117:23 119:20	28:1,18 29:3
62:6	80:12	121:2	29:12 32:20
image 22:7	inch 82:22	indicated 20:24	36:17 37:4,15
23:7 57:11	inches 82:20	36:6 63:20	39:6 40:13
80:8	inclined 83:17	64:6 68:16	45:22 48:22
imaginary	include 105:14	72:14 78:13	49:24 52:4,5
40:11	147:6	indicates 70:6	54:13 55:7
imagine 22:12	includes 10:6	116:1,11	58:3 60:11,21
37:20 46:21	14:15 23:16	117:13,21	62:176:15
71:6	109:15 149:19	indicating	89:18 95:16
imaging 56:3	including 21:24	121:13	103:24 110:5,8
57:12	144:21 148:10	indication	110:14,22,25
immediately	incorporate	53:12 74:3	111:8,17 112:3
24:16 26:4	25:16 85:19	122:6	113:17 116:11
77:13 99:13	91:8,11	indications	117:21 118:1
102:20 115:16	incorporates	74:6	118:17,21,22
impact 23:11	91:20	indicative	118:23,25
127:8 129:10	incorporating	54:16	119:6,8,10
impacted 78:15	54:14 55:6	individual 35:4	122:20 126:13
78:17 79:1	incorrect 61:22	individually	126:23 127:12
146:25	122:2	84:18	128:6 129:13
impedes 65:17	increase 118:12	induction	130:12 146:13
impeding 6:11	increases 38:24	24:25	150:9 152:6
impermeable	101:25 116:15	industry 17:20	inlets 83:3
66:3	increasing 19:7	17:23 19:6	input 22:17
impossible	incremental	109:9 112:21	85:3
136:8	74:23	148:22	inside 12:13
improved	independence	inflating 46:21	49:18 139:13
87:19	6:11	inform 24:3	insight 19:1
improving	independently	115:19 117:4	insolvent 21:17
32:19	113:17	information	instance 124:12
inaccurate	indexed 9:12	15:12,13 21:7	143:23
87:13	indicate 51:15	21:9 23:21,25	instructed
inappropriate	51:17 93:21	24:6,7 25:13	13:20
145:1	97:3 116:12	25:16 27:8	

[instruction - killebrew]

instruction	internet 74:12	interpreters	90:17
11:21 18:15	interpret 13:11	89:19,24	issue 132:6
91:10	36:19 55:18,20	interpreting	144:4 145:12
integrate 94:13	61:8 63:13	11:17 55:6	155:2
integrates	72:175:17	63:7 89:17	issues 154:16
119:7	86:6 88:13	103:25 113:17	items 131:9
integration	91:13 109:18	interpretive	J
94:8,17,23	148:3	87:16	jagged 51:6,8
9:17 119	interpretation	interrupt 84:2	72:24
integrations	23:20 25:11	intersect 68:1	james 2:20,23
139:14	36:21 44:12	intersects	3:16 6:4,15
intend 27:19,23	45:2,12,15	51:25 52:16	107:15 108:5,8
intercepted	47:6 54:7 55:4	53:24	108:16
40:5	55:11 56:8,12	interval 40:24	january 108:25
interceptive	60:23 63:24	42:15,15 54:9	jar 56:23,23
30:8	64:2,19 68:23	54:10,11 75:5	jennifer 6:2
intercepts 50:5	69:970:18	83:24 115:4,10	job 13:21 19:4
interest 9:2,4	72:10 73:22	116:3,5,10,14	join 153:20
10:24 12:5,8	78:14 79:20	116:17,21	joint 21:16
12:12 13:16,17	87:1 88:20,21	117:1,9,15,17	judges 6:9
14:12,25 15:18	89:19,25 97:20	117:20 118:1,5	jumps 52:18,20
15:19,21 16:1	98:22,24 99:24	118:11 119:13	june 1:18
19:18	111:9,11 119:1	119:18 121:20	157:16
interested	119:25 135:6	122:5	k
157:14	24:4 43:13	4:11 119:15	karen 2:17 6:16
interests 94:14	44:24 83:23	introduce 5:25	keep 57:7
94:23	85:19 89:7	6:13,19	155:23
interface 57:3	146:14	intrusion 46:19	kept 84:21
interference	interpreted	intuition 89:8	key 99:22
108:3	46:4 63:13	investigation	kick 29:25
international	82:24 138:16	95:11	59:21
109:11	148:25	involved 11:3	kicking 51:1
internationally	interpreter	13:24 19:21	killebrew 84:12
19:9	23:20	77:14 86:25	84:13

[kind - leslie]

Page 26
[lesser - log]

lesser 56:9	limits 55:12	lines 29:6 30:23	47:23 59:20
level 11:24 57:2	112:23 113:1	31:4 33:1,2	60:6 65:11
58:16,17 90:21	132:21	35:19,24 36:20	66:1,1 72:1
100:13 151:23	line 29:21	39:9,19 44:9	84:10 85:11
153:5	30:25 31:1,1,3	44:10,10,15	87:4,23 88:7
lies 78:4	31:7,7,10,17,21	48:9 49:14	95:10 96:24
light 53:10 59:9	31:24 32:5,6,9	64:1,21 67:25	99:20 100:7
lighter 67:13	32:9,12,13,15	85:3 88:22	103:2 121:10
lightly 27:5	33:3,3,4,7,10	89:2,22 136:12	121:11 125:14
liked 48:12,13	33:15 35:12,25	137:9 138:14	150:22
likelihood	36:5,9,25	138:19,21	llc 1:4,11 3:2
20:22 97:3	39:25 42:6,18	139:8,15,20	4:2 5:5,9
102:22 116:16	42:19 43:3,25	liquid 38:18	Ilc's 111:13
118:12 119:12	44:6,7,8,16,17	liquids 26:14	local 20:18
119:24	44:18 45:9,9	list 9:12,16	21:20 46:20
likely 56:3	47:12,13,16	10:3,4,6 99:21	70:10
83:10 85:7	48:1 50:3,7	listed 131:10	locally 20:22
88:9 90:12,12	51:6,9,25 52:4	listen 16:21	locatable 9:8
90:17 101:22	52:18 53:2	106:25 112:10	locate 9:7 14:16
116:11,13	54:4 55:20	112:13	located 124:17
117:22,23	61:13,14,19,23	listening 55:10	143:15 152:22
119:11 120:4	62:11,17 63:4	89:13 139:4	location 1:19
128:15 135:22	63:5,24 64:7,9	literally 22:21	29:20 30:14,16
likewise 42:14	67:25 68:3,9	29:13 71:25	30:18,19 31:8
46:10 47:21	68:19,20 70:21	lithological	32:10 33:1
48:8 61:12	73:10 80:16	25:4	44:3 49:10
62:24 63:18	81:21 82:8	lithology 24:9	68:2 81:2
71:18 75:22	85:4 88:8,15	little 25:5 29:9	85:15 87:18
77:19 118:10	91:16,19 118:8	29:10,11,19	90:19 96:3,21
lime 39:4	135:19 139:1,7	30:6 31:11	101:14 137:15
limit 119:20	139:11,13	32:1 36:10	locations
123:10 132:24	140:5 144:25	38:21 39:1,16	145:18
155:11	148:16 151:25	39:19 40:9	$\boldsymbol{\operatorname { l o g }} 4: 10,11$
limited 120:2	linear 64:8	41:4,7,14	24:9,25 25:5,8
131:6		42:17,21 47:18	25:9 28:1

[log - mailings]

50:24 51:4	look 10:24 11:5	81:25 83:12	101:11,11
52:4,4,9 57:18	23:24 31:15	120:24 121:9	135:18
74:3 99:3	34:13 42:20	121:21	lower 24:23
101:17,20	44:7 47:25	lose 48:20,20	33:11 46:16
107:2 115:6,7	59:18 63:24	61:9	47:21 51:12,16
115:22 116:1,1	64:1,1,8,21	loses 69:12	53:18,18 56:18
116:4,5,10,22	67:24 68:2	losing 48:19	57:16,21 60:1
116:24 117:9	69:11 71:3	83:19	71:5,6 83:13
117:13,16,17	72:2 80:12	loss 104:24	99:8 118:7
117:21,24	81:21 86:16	lost 74:11	lowered 116:8
118:23 119:8	88:6 96:2	79:22	117:19
119:10 121:18	102:6,25	lot 17:18 19:9	lowest 48:10
121:20	134:19 138:22	23:9 28:18	luxury 126:10
logged 57:14	138:23 140:3	29:2 41:7	135:3
logging 116:7,9	looked 10:23	46:19 47:4	m
117:20	15:20 47:16	48:9,14 71:25	m 1:16,24 2:20
logical 76:9	69:5 87:21	72:25 73:1	$157: 2,21$
logs 19:2 20:19	93:4 101:17	74:22 75:4	ma'am 16:19
24:15 25:10	looking 31:21	85:19 86:4	madam 12:20
52:15 56:15	34:15,15 35:1	92:25 95:16	madam 142:13 155:9
73:4 99:4	36:5 37:2 43:5	99:2 104:5	made 13:21,23
101:5 115:12	44:18 50:24	124:18 126:22	32:21 60:25
117:7,8	51:9 58:9	136:10 143:16	100:4 101:2
long 7:22 96:25	61:13,15,17,24	144:20 155:11	131:17,22
97:1 102:16	62:9 64:10	lots 21:24	132:4,7 157:7
103:7 106:17	66:22 67:23	89:17 143:17	magnitude
108:24 110:20	68:5,10 72:5	louisiana 149:3	$42: 6$
138:8 145:18	72:24 74:1	loved 64:19	mail 8:23 13:25
153:22	75:24 80:7	low 22:22	14:10
longer 36:10	82:10,15 83:7	23:11 47:25	mailed 10:4
37:16,19 104:5	85:10 87:15	51:13 54:9,9	14:9
155:21	98:11 120:21	54:11 59:23	mailing 4:5
longwinded	120:24 140:4	66:1 67:12	8:12,15,16
92:24	looks 22:25	70:23 71:10,21	mailings 8:21
	25:5 80:18	71:22 97:2	13:17

```
[main - measure]
```

main 103:2	manually 45:4	maroon 28:23	math 58:9
57:23	map $4: 931: 10$	29:1 35:19,24	mathematically
maintain 23:12	31:22,23 34:13	44:17 47:11,18	83:16
majority 91:23	39:22 53:19	48:9,14 62:17	matter 1:3 5:3
make 11:11	64:15 67:6,8	62:21 64:15,18	5:4 6:12 20:4
14:4,8,10 25:4	69:16 74:19	64:22 65:3	27:25 111:14
34:5 38:5	83:2 84:4,5,7	66:6,8,23	112:8 113:22
43:12,18 59:7	85:10,17 86:11	68:20 71:23	114:1 118:16
60:14,24 61:1	91:1 99:9	75:19 77:7	matters 154:17
64:24 79:20	101:25 111:20	78:19,20 79:13	mature 110:18
81:10 89:6	111:23 114:4	91:16,19 96:13	maximize
99:20 110:9	114:20 134:23	marotz 2:5	74:22
111:2 118:17	135:2,4	3:10,17,20	mean 12:13
122:15 123:12	mappable	5:22,25 6:2	14:9 15:9,14
123:13 126:14	64:12	16:13,14 97:9	29:7 39:15
130:8,14 132:5	mapped 47:11	97:13 100:16	41:4 56:21
133:14 135:19	87:22 102:4,23	103:14 107:12	60:3 65:14
138:13 142:18	111:24	107:14,19	67:11 71:4
148:21 154:16	mapping 47:2,7	108:4,5,13	83:12 96:7
makes 91:20	48:1 53:21	113:23,25	123:13 127:18
making 26:19	67:18 72:2	120:7 132:3	129:9 133:13
70:4 74:13	75:7 80:4	150:18 151:2	136:6 138:13
83:23 93:16	86:24 91:1	151:15 152:14	143:8,18
man 6:23 7:19	101:7	154:13	147:21
12:17 13:22	maps 86:16	marotz's	meaning $12: 18$
15:4	102:15 119:14	148:23	30:1 100:17
management	marble 65:19	martoz 97:10	meaningful
109:15	marbles 56:24	103:12	151:25
manager 6:4	65:20	mass 137:6	means 34:22
7:3 108:23	march	master 109:6	35:5 47:19
manipulation	mark 82:3 95:3	material 65:22	52:21 67:1
52:13	marked 80:	132:6	meant 147:25
manner 149:21	96:3,18 135:19	materials 4:4	measure 24:24
150:6,14	marly 39:3	$\begin{aligned} & 8: 10,16,24 \\ & 20: 4,8112: 5 \end{aligned}$	$\begin{aligned} & 38: 181: 24 \\ & 137: 1 \end{aligned}$

[measured - near]

[nearby - objection]

nearby 25:24	44:3 60:4,5	48:8,10 49:16	notice $8: 24$
28:2,3	62:16 63:3,10	50:9 54:5	11:12 14:17
nearly $83: 16$	63:19 66:5,14	59:20,22 61:13	15:18,22 50:23
102:11	68:8 70:25	66:17,17,22	notices 13:20
neat 91:22	71:12 75:9,9	69:170:16,21	number 9:10
necessarily	75:12 76:1	71:1,2 78:9,11	14:20 26:15
134:1	77:20 91:16	80:1 82:7	33:2 35:12,15
necessary	nicely 91:23	96:13 101:13	58:14,15,15
94:13 134:21	nine 26:2	126:17 140:15	62:12,16,16,20
134:21 151:12	nitz 154:2	northeast 31:2	63:3 67:16
need $18: 11$	noise 71:25	31:13 33:15	72:18 113:3
43:12 98:23	86:24 89:11	47:12 61:14	115:9 116:25
100:7 110:14	non 77:11	64:16 67:24	120:25 128:3
131:11 133:5	91:13	70:17 79:18	148:2,8
141:1 142:18	noncommercial	83:11 135:14	numbers 80:9
151:6 154:24	24:20	135:20	121:17
155:14,18	nonproductive	northern 47:23	nw 19:22
needed 22:5	146:17	66:24 78:21	139:19 144:3
needs 91:5	nonradioactive	139:17,17	nw1/4 1:7 5:7
135:10 140:22	51:18	northwest 31:1	0
neighboring	nonstandard	33:8,14,14	(5:1
71:9 101:24	114:11,22	48:19,20,23	$\text { o1 } 9: 13$
neither 6:10	nope 9:8	61:13,18,20	oah 1:7
neutron 25:9	normal 125:3	62:11 63:9	$\text { oath } 157: 6$
115:7 116:4,23	normally	65:5,9 68:18	object 12:16
117:16 121:18	123:24	69:170:17	103:5,7 132:3
never 128:9	north 1:85:8	112:1	142:7
140:2 149:1,8	10:9,10,15,20	notary 1:25	objection 12:22
155:21	11:6 19:25	157:22	$13: 10 \text { 14:2 }$
new 11:10	29:16 30:19,25	notated 55:19	76:18,21
26:23 27:18	31:7,24 32:5	notation 42:23	103:12 108:1
28:24 29:2,17	32:11,13,16	note 117:24	132:2,9 142:19
30:15,15 31:8	$33: 3$ 35:11	noted 115:25	142:19 144:8
32:10 35:16,18	36:1,4,7,9,24	117:12	144:11 147:23
35:21,24 36:12	40:25 47:17,21		149:5

[objections - okay]

objections	13:3,9,14 14:6	og 1:8	49:20 50:11
157:7	16:12,15,17,20	ogr 1:6	52:12 55:15
objective 26:6	16:25 18:10	oh 7:2 82:14	56:20 59:7
27:4 89:10	32:3 34:4,7,12	132:10	61:25 62:6
97:23 98:3,4	34:18 35:3	oil 1:4,11 $2: 10$	65:8,16 68:23
100:21	49:2 73:17	3:2 4:2 5:5,9	70:14 72:8
objectively	76:20,25 77:3	5:21 6:4 7:3	74:10 78:2
89:15	79:5 97:9	10:16 17:23	80:6,14 81:8
objectors 2:17	103:11,16	19:5,8,11	81:20,23 82:1
5:21 78:3	104:12 106:20	20:21 22:3	82:6,18,25
obligations	106:24 107:4,8	24:12,19,21	83:5,16,20
124:8	107:12,16,20	25:19 26:11	85:1 86:2 88:2
obliquely 36:10	107:23 113:23	73:8 74:17	88:25 91:24
obtained	120:9,15 132:1	95:6 108:23	92:17 93:14,18
121:14	132:8,12	109:9,11	94:20 95:3,14
obvious 53:7	134:10 139:5	110:18 111:13	96:12,15 97:8
obviously	141:24 142:9	112:21 124:9	98:19 103:11
137:13	142:14,21	125:21 126:2	106:8,18 107:8
occupation	144:10,19	126:18 129:2,7	107:16 120:9
17:13	145:3,9 148:7	130:24 131:16	120:15 121:16
occur 5:15	150:18 151:4,9	132:15 133:21	121:21,25
94:15,24	152:15 153:8	134:9 135:14	122:9,13 123:9
126:11	153:18,25	149:16 151:19	123:16,21
occurring	154:3,14,19	okay 7:6 8:15	124:12 125:2
57:19	155:6,9,17	10:23 11:5,20	126:20 127:22
occurs 55:22	officer's 58:13	13:13,24 16:6	128:1,16,25
offer 12:17	officers 11:21	18:19 21:11	130:20 132:12
offered 17:20	offset 46:13,15	23:21 27:25	134:19 136:1
146:15	67:1 72:4	28:6,18,22	138:2 140:3,13
office 2:3 5:10	offsets 86:9	31:19 33:5,20	140:17 141:4
5:24 6:3,7	91:1,2	34:2,12,18	141:21 143:12
officer 1:16 5:3	offshore 109:11	36:13,23 38:10	143:23 146:13
5:12 6:7,12,18	oftentimes	39:7,16 42:1	146:24 147:2
6:22,25 7:6,10	54:16,17	42:22 43:20	147:18 149:14
9:20 12:20,21		45:13,18,21	150:9 151:4,9

[okay - particular]

154:3 156:1	opposed 122:1	146:8 154:4	69:15 70:6
old $24: 8$	orange 51:6,9	overall 150:13	71:14 73:10
oltman 2:17	51:24 52:3	overlaid 52:5	paper 154:17
6:16 78:3	67:22 69:7	overlay 52:7	paragraph
once 110:8	order 1:5 5:6	oversaw 23:19	97:18 98:22
116:8	5:19 130:20	own 99:15	parameters
ones 27:21	135:10 143:4,9	owned 11:12	84:21 86:9
online 15:12,13	143:24 144:4	136:10	parcels 111:20
107:25	145:11 146:3	owner 12:5,6	part 8:7 19:20
onshore 109:11	orderly 76:16	12:12,13 13:17	20:7 30:10,10
open 151:1	77:12	16:1,7 129:1	36:25 43:4
154:7	orders 91:12	owners 8:17,18	47:6,24,24
openings 5:18	ordinarily	9:2,5,6,9,15	51:24 52:13
operating	143:18	10:7,24 11:6	57:16 66:5
149:20	ordinary	12:8 13:20	67:674:15
operations 19:1	148:24	14:15,25 15:18	82:23,24 87:5
106:13 109:14	oregon 19:13	15:19,21 77:15	99:8,8 101:3
109:16	19:15 22:5	77:19 99:15	111:16 121:21
operator 8:3	organic 65:22	129:6 146:22	122:10,23
24:17 127:8,11	original 30:4	p	123:15 124:8
134:4	32:19 84:15	p 5:1	126:24 127:16
operators	ought 155:14	$\text { p.m. } 5: 14,16$	129:8,17
25:14	outcropping	p.m. $153: 15156: 3$	140:14 143:3
opinion 12:18	104:6		143:13 155:22
15:8 21:1 22:4	outline 10:20	$\text { pad } 23: 2$	partial 121:6
76:5,22 79:15	20:24 31:22	page $3: 3$ 4:3	participating
84:6 85:6	67:20 69:8	$28: 1429: 1$	21:15
119:22 132:20	87:23 91:4	$49: 6,9,2265: 1$	particular
134:5,7 135:23	outlined 99:13	68:6 97:18	39:21 40:8,15
opinions 20:10	outlines 78:7		41:15 44:11,22
21:876:24	86:11,13,20	S 9	45:23 46:25
135:1	outlining 28:23	$\text { ges } 9: 13$	50:19 52:9
opportunity	56:15	$155: 24$	64:5 84:11
111:12 112:7	outside 12:10	pair $27 \cdot 15$	85:10 88:8
129:1,17	12:14 78:24	$62: 14,1463: 7$	90:4,16 95:7

Page 33
[particular - piotrwoski]

101:7 105:3	42:9,10,11	permit 27:23	13:12,13,19
106:3 125:25	43:5,7,7,17	75:12 100:23	14:4,11 16:10
128:1 140:17	45:17 53:11,11	145:5 148:11	16:13 76:18,23
143:6	54:12,15,18	154:8	79:6,7,10,24
particularly	55:21 56:4,5	permits 100:25	83:20,22 88:18
86:22 113:2	56:16,18 59:13	person 8:20	90:5,7 92:15
parties 5:17	59:23,25,25	77:11	97:6 103:5
154:15,24	60:6 61:2,7,9	phase 43:10,11	104:13,14,18
155:22	62:14,14,23	43:19	104:22 107:8
partner 19:18	63:7,14,16	phone 78:5	107:10 108:1
partners 21:13	64:4 67:19,22	phrases 12:6	113:24 120:9
22:8	68:10,13,14	physical 24:24	120:12,14,15
parts 143:7	69:5,6,13,15,15	27:15 29:15	120:17,20
party 157:13	70:6 71:7,9,14	52:10	122:17 125:15
past 63:10	71:15,18 72:2	physics 57:3	125:16 132:1,8
153:15,17	74:6 83:4 84:5	pick 45:4,16	132:10,13
pasture 30:20	85:20 86:15,24	picked 43:25	133:5,7 138:6
path 29:22,22	88:6 90:24	137:22	138:8 139:7
33:6,9	101:25 102:16	picture 52:5	141:22 142:5,7
patience	103:1,4	piece 39:25	142:14,18,22
141:23	peaks 71:7	127:23 137:11	142:23 143:13
pattern 64:5	pending 103:7	pinch 70:7	144:8,14,17,19
150:6	people 10:4	pinches 69:9	144:24 145:3
patterns 143:6	11:9,10 15:23	ping 37:22,25	146:2 147:3,19
pay 100:12,17	55:177:14	37:25	147:23 148:2,5
100:17,19	89:22 90:11	pinged 38:7	148:7 149:5,10
payette 1:9 5:8	91:4 104:5	pink 51:25	149:25 150:19
8:24 14:19,24	107:25 135:13	52:16 53:10	151:4,7 152:15
15:6,12,24,25	155:19	pinol 2:11	152:19 153:7,9
15:25 16:3,7	percent 89:1	piotrowski	153:10,12,23
113:10 139:10	perfect 79:12	2:18,20 3:5,9	154:20 155:6,8
paying 33:19	99:18	3:12,18,21	piotrowski's
pdf 97:19	permissible	6:13,15,15,16	151:11
peak 41:8,14	144:23	9:20,22 10:2	piotrwoski
41:20 42:1,5,8		12:17,19,21,23	83:18 84:23

[pipe - presence]

pipe 26:9	154:21,25	pore 65:20	power 151:10
place 5:16	pointing 45:23	porosity 25:9	practically
46:22 79:12	50:16,17 52:24	73:6 101:21	74:17
149:2 157:4	55:25 59:8	porous 65:24	practice 103:25
placed 22:13	61:3 63:2 66:9	portion 5:15	155:20
96:3 135:1	66:23 70:6	42:19 53:5	pre 54:19 69:18
places 10:13	71:7,12 72:25	57:21 66:24	preceding
46:7 55:23	75:2	121:7 153:14	24:16
plan 107:10	points 29:4,13	153:19,21	precise 55:8,9
please 59:6	29:14	154:6,6,10	86:25 140:1
80:6 82:2 85:2	polarity 54:1	portions	precisely 22:16
85:23 87:12,13	pool 20:23	140:14 146:10	137:9
108:14 131:25	26:22 30:25	147:10 148:20	predecessor 8:3
132:12 134:19	32:24,25 35:14	155:25	21:12
142:8 145:6	35:16 59:10,15	position 108:21	predict 127:10
148:14 155:5	60:18,19,19	positions 19:6	134:12
pllc 2:11,18	62:13 63:1	positive 53:13	predicted
6:16	64:5,14 65:18	54:3	27:12 54:19
plus 58:8 81:4	67:21 76:10,17	possible 54:14	60:12 61:6
95:10	77:12,22 85:4	89:11,16 92:11	98:10 100:12
point 12:17	85:8,16 87:2	93:19 94:4	predicting
22:14,15,18,19	88:12 89:4	96:23 113:2	27:16
27:15 28:22	90:18 96:10,18	123:21 133:3	prediction
29:6 30:8 34:1	97:23 99:6,6	137:6,14	38:20 130:8
36:5 39:21	100:3 112:23	151:23	predictions
40:8,9 54:7	119:21 123:23	possibly 78:25	100:24
55:13 58:20	128:1,12 129:2	98:16	predictive
59:4,7 60:14	132:22 133:12	post 100:25,25	57:19
60:14 61:10	148:25 152:1	154:14 155:10	preference
62:22 67:2,3,4	pools 95:5	potassium	120:10,12,13
74:14 87:11	102:22 113:7	51:16 52:22	premiere 104:3
93:16 94:13,22	122:13,18	potential 25:18	prepared 87:17
121:5 137:3,4	143:6	potentially	presence 54:9
142:11 150:21	population	145:25 146:12	72:11 109:19
153:21 154:10	24:15	147:1	115:19 116:2

[presence - productive]

$116: 11,13$	$62: 2563: 1,21$	prior $21: 15$	processed
$117: 5,14,22$	$64: 5,1467: 21$	$25: 1426: 4,17$	$44: 2584: 17,19$
$118: 10$	$68: 1,1172: 15$	$100: 11,20$	$86: 8$
present $5: 22$	$76: 1078: 21$	$109: 8 \quad$ processes $102: 6$	
$6: 8,20,25$	$79: 184: 685: 3$	privy $127: 12$	processing
$71: 1372: 6$	$88: 1289: 4$	probable	$23: 1986: 5$
$78: 1895: 14$	$97: 23100: 21$	$112: 23115: 19$	$89: 16103: 1$
$116: 16$	presumes $92: 5$	$117: 4119: 1,20$	$109: 16$
presentation	$92: 9$	$120: 4$	produce $100: 5$
$5: 19$	presuming	probably $19: 7$	$129: 2,7145: 16$
presented $24: 7$	$27: 2230: 15$	$33: 1940: 6$	$150: 13$
92:23 93:1	presumption	$46: 1447: 5$	produced
94:12 95:17	$54: 6$	$51: 260: 16$	$26: 10,10,12$
$119: 6128: 6$	presumptive	$67: 1070: 1$	$101: 8,19113: 4$
$129: 13,25$	$43: 4,22$	$85: 2286: 12,20$	$118: 2145: 15$
$131: 13135: 22$	pretty $21: 19$	$89: 2096: 24$	$149: 23$
$146: 14150: 11$	$84: 2598: 5$	$102: 16103: 10$	produces $111: 6$
presenting $5: 20$	prevailing	$104: 3,8105: 13$	$114: 17$
presents	$57: 20$	$150: 25155: 24$	producing
$118: 25$	prevent $66: 3$	problem $47: 5$	$19: 1126: 11$
president $21: 11$	$126: 2131: 16$	$136: 12$	$75: 1176: 14$
pressure	$131: 20145: 23$	proceeding	$100: 4110: 18$
$149: 21$	preventing	$19: 2123: 17$	$110: 24113: 4$
presumably	$125: 21130: 23$	proceedings	$114: 15117: 25$
$14: 19$	previous $11: 9$	$5: 15,237: 5$	$118: 5119: 9,19$
presume $26: 22$	$33: 193: 4$	$13: 1216: 21$	$149: 20$
$59: 1060: 16$	previously $5: 17$	$144: 21145: 4$	production
presumed	$21: 2586: 3$	$153: 17,20$	$20: 2137: 1$
$30: 2431: 25$	primarily	$154: 5,7,10$	$77: 16,21$
$32: 2535: 15$	$25: 2027: 20$	$156: 3157: 4$	$110: 20118: 11$
$36: 742: 13$	primary $23: 20$	process $11: 3$	$120: 2$
$44: 1349: 18$	$97: 2398: 3$	$23: 1144: 25$	productive
$54: 9,1056: 14$	$112: 25$	$47: 787: 16$	$19: 827: 10$
$57: 2558: 4$	principles	$89: 6109: 25$	$61: 1188: 4$
$60: 1862: 13,15$	$50: 1157: 3$		$101: 23102: 9$

[productive - putting]

102:20 112:23	40:5 44:3	protect 125:22	pulled 86:12
119:9,11,11,20	49:15 50:8	128:18 130:25	114:2
profession	60:4,5 61:4,20	prove 101:5	pulse 38:5
17:16	61:21 62:1,7	142:10	41:10,12
professional	62:16 63:3,10	proved 58:5	pulsive 37:5
18:2,22 19:4	63:19 64:13	proven 58:5	pure 126:23
profile 111:21	65:6 66:14,24	70:11 101:10	purple 44:17
111:25	68:1,8 70:25	102:20	78:10 118:8
profiles 119:14	71:9,12,14	provide 8:6	139:13
prognosis	72:13 75:8,21	14:17 19:16	purpose 43:25
100:23	76:1,5,16 77:6	48:22 112:3	45:19
program 6:4	77:20 78:8,15	137:15 152:10	purposed
108:23	78:22,24 91:3	153:10	155:20
project 19:19	91:16 92:17	provided 20:6	purposefully
23:16,25	93:1,10 95:12	provides 92:6	43:14
projects 109:12	95:19 96:6	124:23 128:25	purposes 13:17
proof 83:24	99:12 102:17	providing 87:6	pursuant
properties	102:25 106:17	87:7	152:24
19:12 21:18	110:11,15	proximity	pursued 21:16
24:24	111:20 112:1	111:6	146:11
property 11:12	114:5,7,18,23	public 1:25	push 55:11
78:4 136:13	115:16,20	5:14 136:19,23	pushing 57:8
137:2,12 141:5	116:15,17	137:7,16,19,24	put 10:12 12:6
141:9 146:21	117:6 118:13	138:4,12	22:25 25:10
propose 69:21	119:2,13,15,18	139:22 141:6	37:5 51:2 54:2
75:11,13	119:21,22,24	141:10 147:4,5	55:5 56:24
proposed 19:21	120:5 132:22	147:7,16 151:1	57:1 60:5
21:2 23:16	135:9,14	153:9,10,16,19	86:10 91:2,19
26:23,25 27:18	147:15 150:12	153:20,24	95:4 127:6
27:18 28:4,24	proposing 66:5	154:1,6,9,10	154:17 157:5
28:24 29:2,17	93:12	157:22	puts 23:2 25:6
30:14,16 31:8	proposition	publicly 115:12	putting 103:25
31:8 32:10	22:6 43:20	pull 44:6,6	
35:16,18,21,24	prospective	134:20	
36:7,7,12,25	112:23 146:9		

[qualifications - receiving]

q	126:21 130:1	quote 116:1	ready 107:17
qualifications	132:11 134:17	r	real 19:1 29:4
8:2 59:11	138:8 144:9,14	r 2:12 5:1	56:20 136:10
92:16	144:18 145:2,5	radiation 25:3	37:2
qualified 148:6	145:8 147:6,24	52:21	reality 44:5
qualify 83:25	$148: 12,13,15$	radioactive	realizing 33:17 really $24: 13$
quality 14:24	$50: 20151: 8$	1:17	really $24: 13$ $42: 8$ $74: 18$
19:3 50:18,19	questioning	raise 142	84:25 105:2
73:5 111:4	130:19	ed 52:1	reask 145:7
quarter 77:10 91:21,24 92:18	questions 7:18	randomly 55:2	reason 27:10
92:18 97:22	9:19,21 10:2	136:2	43:14 104:1
126:17 140:14	12:2 13:18	rather 28:12	reasonable
147:12 152:23	16:11,13 17:9	145:17 152:8	111:2,9 118:25
152:24,24	49:13 79:3,6	ray $25: 2,3$	119:25 135:5,8
153:4,4	79:10 85:14,24	51:10,13,14,	135:24 150:12
quarters	97:7,13,16	51:19 52:21	reasonably
146:15	103:13,21	2:24 73:1	21:2
quartz 51:18	104:14,18	75:4	recall 26:15
question 13:6	108:2,13	reach 21:7	27:13 58:7
13:15 14:7,9	120:20 142:2	72:10 81:18	64:9 89:12
15:11 26:16	144:21,23	130:13 131:9	95:21 134:21
34:5 36:15	148:3,6,8,11,23	31:12	149:11,11
41:3 43:1	149:11 150:24	read 11	153:3,6
44:14 49:21	151:3,10,15	$76: 2577: 2$	receipts 4:5
74:12 77:1,4	152:19	125:17 141:16	8:13,15
78:2 84:25	quick 104:14	143:3,13 145:6	receive 77:16
85:13 87:6,10	107:18	147:19 148:13	received 18:15
87:12 88:17	quicker 40:16	148:16	110:8 118:17
90:1 94:10	6:4	reading 84:13	150:10
96:22 98:1	quickly 29:5	84:14 113:16	receiver 22:19
99:19 100:9	155:15	124:24 125:18	84:22
103:6,8 105:1	quite 52:18	$124: 24$	receivers 23:4
117:3 122:16	58:11 82:10,12	readings 51:13	receiving 77:15
124:1 126:19	82:12 105:14	51:14,17 52:10	77:20

[recently - remotely]

recently 101:17	recross 3:12,21	reflect 8:16	regardless
110:23	104:17 152:18	37:8	34:12 128:11
recess 49:3	rectangle 28:23	reflected 22:19	128:13
73:16 107:22	136:3 139:25	37:10,12	region 55:25
156:1	rectangular	reflecting 42:3	69:3 86:14
recollect 74:12	140:22,23	reflection	87:25
recollection	red 30:23 31:24	37:14,15,17,19	regions $72: 25$
74:10	32:9 49:14	40:16 41:12,16	regulatory
recommendat...	50:3,7 53:11	44:22 45:25	105:6 106:15
118:17,20	53:23 59:9	46:9 48:3,4,4,5	relate 121:18
119:5 131:18	67:14 139:1,7	48:6 53:13	related 98:1
recommending	140:4	54:3 56:9,12	relates 17:16
122:25 123:5,7	reddish 44:18	56:18,19 57:22	99:24 149:20
recommends	redirect 3:11	62:25 63:20	relating 7:14
119:3	3:20 16:15	68:10 69:11	17:5 108:9
record 11:7,10	103:17,20	72:21	relationship
22:23 24:10	151:14	reflections	94:7
28:13 32:4	reduce 131:24	22:23 39:20	relative 157:12
37:4,9,13 40:8	132:14,18	40:8,10 47:2	relatively $52: 11$
42:24 49:6,7	redundant	62:12 67:2	53:14 56:5
58:13 73:18	99:20	93:12 100:15	63:21
77:2 87:13,14	refer 10:15	101:6 102:19	releasing
101:3 107:21	60:3 77:6 98:6	102:19	149:14
107:23 142:8	reference 91:20	reflective $83: 3$	relevant 11:25
154:25 157:10	115:12 148:24	reflectivity	12:24
recorded 23:4	referencing	69:4	rely 127:19
44:25,25 51:11	136:24	reflector 66:19	relying 64:14
157:8	referred 116:7	66:20,20	remain 57:4
recording	142:24	reflectors 47:7	remark 70:4
22:20 41:11	referring 10:8	47:8,8	remember
156:2	32:5 51:5,8,24	refracted 37:11	57:15 58:6
records 14:24	59:2 65:4	refrain 142:15	150:2
15:7 25:6	70:18 71:4	refresh 31:20	remind 104:22
recovery 150:7	84:3 95:7	regarding 12:3	remotely $7: 15$
	114:13	105:1 110:10	17:6

[repeat - right]

$\begin{gathered} \text { repeat } 122: 16 \\ 124: 1144: 9 \end{gathered}$	$\begin{gathered} 154: 21 \\ \text { requested } \end{gathered}$	$\begin{array}{cc} \hline 99: 4 \\ \text { resolve } & \\ \hline 8: 15 \end{array}$	$\begin{gathered} 149: 22 \\ \text { revenue } 77: 20 \end{gathered}$
repetition	111:18,23	resource	146:20
102:7	118:22 124:6	149:23 150:7	revenues 77:15
rephrase 94:10	126:17 132:16	150:13	77:17
132:10	143:24 145:22	resources	reversal 54:1
reported 1:23	154:20 155:2	134:9	review 21:24
118:2	requests 125:9	respect 60:23	110:1 111:13
reporter 7:11	require 131:3	72:12 75:16	111:16 112:7
18:6,17 48:25	145:16	79:13 118:18	118:15
70:2 79:22	required 141:4	149:19	revised 112:4
83:18 84:9	requirements	respond 144:11	richard 7:1,2
88:16 90:5	110:2 143:7	response 12:22	right $12: 14$
100:6 122:15	145:20	27:14 69:14	14:13 16:8,24
125:13 133:5	requires 16:8	76:20 116:9	18:20 20:1
138:6,10 145:6	requiring	117:19 132:9	25:21 26:9,11
157:3	57:18	148:23	28:11,20 29:9
reporter's	research 10:5	responses	29:20,22 30:10
157:1	researched	113:14 119:15	32:17 33:7,11
represent	15:17	119:18	33:12 35:13,15
62:12 63:8	reserves 78:18	responsibility	35:23 36:23
65:21	151:19	19:7	37:2 38:3
represented	reservoir 25:18	responsible	40:15 41:3,17
54:11	35:22 42:14	23:15	41:21 44:16,17
representing	57:5 65:18,18	rest 64:9	47:11,13,18
6:5 62:15,25	99:8 100:3	124:10 146:9	48:8 50:4,5,21
63:20 64:4	128:2,2 151:24	restricted	51:7,14 52:1,6
represents	152:8	92:13	52:17 53:20
39:20,22 84:5	reservoirs 95:6	rests 132:4	54:4,23 55:22
84:6 85:7	119:10 122:13	result 88:22	56:1,6 58:16
request 110:2,6	122:18	104:20 105:16	58:17,21,25
110:12 111:16	resistivity	129:10 133:19	59:6 62:2,4,8
112:2,5 119:3	101:21	134:1,6 150:4	62:19 63:6
122:23 123:3	resolution	results 105:3	64:11 65:6
123:15 146:4	55:12 73:4	106:1 149:21	66:14,16 67:11

Page 40
[right - sand]

71:672:18	rigorous 97:19	round 137:11	27:7 30:9
74:778:12	rigs 18:25	rule 40:19	32:24 35:14,14
80:9,10,19	rise $45: 2$	144:10,20	35:14,15,17,18
81:13 82:4,11	river $1: 4,11$	rules 11:20	35:22,22 40:5
82:25 83:3,7	2:10 3:2 4:2	145:4	42:13,14,15,16
86:7 89:2	5:5,9 6:23,24	run $44: 4,10,10$	43:5,23 46:3
91:25 93:20	7:3,20,22,24	70:1 73:4	48:2,20 50:4
94:2 96:10	8:2 9:3 10:16	running 31:7	51:20,22,22
97:4 100:8	19:17 23:22	31:24 56:15	52:17,24 53:5
105:12 106:11	110:22 111:13	70:24 78:20	53:6,9,16,25
106:20,24	111:17 112:3,4	80:9 99:21	54:10,17,20,21
114:3 115:8	112:16 120:1,3	103:6	55:21,24 56:8
116:3,24	139:10	runs 31:2 36:25	56:10,11,11,19
117:15 120:25	river's 8:7,9	61:20 66:23	57:6,10,16,22
121:1,9,25	112:8 113:18	78:21 82:13	58:1 59:14
122:7,11	road 23:1	121:10	60:7,16,17,23
123:12 124:9	rock 24:25 25:1	S	60:23 61:5,6,8
125:4,11 127:5	25:4,8,10	s 1:20 2:5,13	62:13,13,14,15
127:23 128:14	38:11,13 39:2	S 1.20 2.5,13	63:1,5,8,8,19
128:21 129:21	73:13 115:23	saddle 46:6	64:5,7 65:21
130:15 131:4,5	117:10	66:1 70:23	67:5,21 68:3,9
131:12 134:9	rockies 19:12	$71: 4,1075: 22$	68:10 69:9,13
138:13 139:8	rocks 24:10		69:16,16,18,21
139:12,22	role 109:23,25		70:8,11,12
140:15 141:7	110:8,15	14.	71:19 72:21,22
143:1,25	roll 44:9	salient	74:17 75:5
145:17 146:22	153:19	29:4 44:2 67:3	76:10 77:15,17
149:23 150:1	room 18:12	$\begin{aligned} & 29.4 \\ & 67: 4 \end{aligned}$	77:18,18,22,22
152:25 154:12	154:4		78:18 80:5,25
rights 125:22	rough 151:5	sample 27:20	80:25 84:5
128:18,23	roughly $29: 15$	$73: 3.974: 25$	85:3,8,16
129:1,10,23	40:23 58:8	samples 70:13	88:12 89:4
130:3,9,15,25	77:7 80:10,22	sand 20:23	90:18 97:24
134:14 146:3	81:6 82:2,5	$24: 1125: 12$	98:3,3,4,4,7,10
146:24	98:21	26:7,7,8,12	98:12,13,17,18

[sand - see]

$98: 25,2599: 1$	$144: 5146: 10$	science $17: 17$	$125: 16129: 18$
$99: 12,23,23$	$146: 10$	$50: 12109: 5,6$	$136: 11137: 9$
$100: 3,12,12,13$	sandstone	scientific $85: 7$	$137: 14138: 14$
$100: 14,14,17$	$65: 19,24$	$131: 4,6$	$138: 18,21$
$100: 19,19,21$	$101: 12119: 9$	scott $6: 8$	$139: 8,15,17,18$
$100: 22101: 5$	sandstones	scrambling	$139: 19,19$
$101: 15,16,18$	$123: 2$	$83: 21$	$140: 14142: 24$
$102: 8,8,10,18$	saturated	screen $28: 6$	$142: 25143: 4$
$102: 19114: 17$	$35: 1438: 16$	$49: 873: 15$	$143: 16,19$
$115: 10,20$	$53: 6,954: 8$	$79: 12113: 24$	$144: 2,2,3,3$
$116: 3,5,10,12$	$100: 22$	$114: 3120: 22$	$146: 6,8,8,9,16$
$116: 12117: 1,5$	saw $122: 10$	scroll $36: 385: 2$	$146: 21,22,25$
$117: 9,14,16,20$	saying $18: 22$	sea $58: 15,17$	$146: 25147: 9$
$117: 22,23$	$41: 642: 12$	$122: 1$	$152: 23,24,24$
$118: 1119: 12$	$53: 12,1778: 11$	seal $157: 15$	$153: 1,3,5,16,24$
$119: 16,16$	$95: 22121: 9$	seamless $77: 23$	sections $15: 1$
$121: 8123: 8$	$127: 2,24$	second $26: 1$	$50: 2491: 25$
$144: 5$	$134: 13$	$33: 1038: 4,8,9$	$97: 22126: 17$
sands $21: 4$	says $52: 24$	$38: 23,2439: 1$	$142: 4143: 25$
$25: 21,2526: 19$	$53: 1761: 4$	$58: 1282: 3,20$	$144: 7145: 13$
$26: 24,2427: 6$	$62: 1072: 19$	$111: 24$	$147: 12148: 20$
$27: 10,19,20$	$105: 6118: 8$	secondary	$148: 21$
$30: 1749: 18$	$122: 2124: 16$	$73: 2398: 3$	sediment $46: 24$
$54: 170: 1$	$130: 22136: 14$	seconds $38: 6$	$47: 20$
$72: 12,1573: 2$	$136: 17138: 2$	$45: 2560: 9$	sedimentary
$73: 5,6,23,23$	$140: 21,25$	$75: 380: 11,12$	$46: 21$
$74: 17,2575: 14$	$141: 11143: 4$	$80: 1981: 4$	see $27: 628: 15$
$75: 16,1776: 6$	$143: 12147: 18$	$93: 6,995: 4$	$28: 2529: 10$
$76: 1479: 16$	$147: 19$	section $1: 7,7$	$30: 631: 10,11$
$80: 383: 9$	scale $29: 8,12$	$5: 7,719: 22,23$	$31: 22,2332: 1$
$93: 13,18,19,22$	$29: 1551: 13$	$27: 2046: 21$	$32: 2337: 3$
$96: 21111: 22$	$67: 12$	$69: 20,2175: 14$	$39: 20,2241: 7$
$114: 18128: 4$	scaled $52: 14$	$75: 2577: 8$	$41: 1542: 8,8$
$132: 16133: 18$	scattered $24: 2$	$91: 2192: 18$	$44: 2245: 1,22$
$135: 10,15,21$	$24: 15$	$124: 13,18$	$45: 2446: 3,7,8$

Page 42

[see - side]

46:12,14 47:8	28:1 30:23	senses 37:7	122:17 141:14
47:15,17,23	31:17 33:1,21	sent 11:8 15:18	share 28:6
48:3,9,19	33:25 35:12	16:6	77:21 129:2
50:23 51:19	36:20,21,25	separate 64:22	shared 146:21
52:15 53:1,16	38:11,21 39:8	71:2 99:6	ship 37:24
53:19 56:6	43:18,21 52:5	153:17	shoot 22:5
58:5 59:20	53:8,12,17,21	sequences	shorthand
60:9 62:23	55:13 57:11,19	109:16	157:3
63:5,15,16,19	57:23 60:20	series 22:17	show 24:19
63:21 64:3,22	62:1,11,17	service 137:7	32:1,23 33:22
66:19 67:8,17	64:10 70:9	services 19:17	36:22 51:21
68:11,12,12	72:5 74:18	155:13	53:4 57:17
70:9,21 71:11	80:16,17 82:8	sessions 77:10	66:6 73:11
71:13,24 72:23	84:13,13 87:1	set 20:13 30:3,5	86:12 89:4
73:5 74:24	89:24 90:4	157:5,15	138:18
75:3,24 77:9	97:20 99:4,24	setback 145:19	showed 39:25
80:24 81:7	100:15 101:10	sets 23:2	64:19
82:13,14 85:4	101:12 102:2	seven 9:13	showing 40:24
85:20 89:9	102:10,17	70:13	48:22 51:10
91:17 99:3	104:2 109:15	seventy 98:20	52:23 54:3
101:14 113:24	109:16 111:2,5	several 63:25	62:11,18 114:5
120:22,25	111:21,22,25	138:18	shown 52:15
121:10,22	112:16 113:11	shade 122:18	68:21 74:3
138:23 140:5	119:13,14,15	shaded 51:25	shows 24:12
seeing 47:2	119:17	shadows 27:7	31:16 35:12
74:5 153:3	select 55:3	shale 51:15	36:15,18 50:2
154:3	selected 30:24	shalforen 6:3	73:10,11 74:3
seek 92:12	31:22	shallow 47:7	75:2,5 82:2
seem 102:24	send 11:12	82:12	83:2 101:1,19
seen 140:2	13:20 15:22	shallower	102:1 115:9
seg 41:23	37:21	40:15 46:2	116:2 117:1,14
seismic 20:18	sending 38:11	50:15,16 60:2	152:7
22:6,9,11,15	sense 37:18	shape 65:10	si $86: 15,15$
23:11,15 26:5	106:8 129:14	90:19 93:1	side 30:20
26:17 27:14		105:2 106:2	34:15 35:20

[side - sound]

37:3 47:17,19	85:23 87:5	slowly 18:16	snap 45:3
47:20,20,21	91:10 92:4,8	small 70:12	soft 42:4,16
48:10,11 50:21	94:7,16 95:8	73:11 105:11	software 45:3,9
52:1,17 59:18	95:18 97:6	150:4	45:14,15 52:8
62:19 64:16	105:16,23	smaller 89:4	sole 6:12
66:2,9,12 78:9	130:1,13	96:5 105:8	solely 91:19
78:19 96:13	136:10 137:21	126:7 129:11	solid 136:11
115:22 116:3	sit 40:1 128:11	131:19 132:14	solidity $38: 4$
117:10,15	sits 19:25	140:4 152:9	solve 38:2
120:25	situation 48:15	smith 3:7 6:23	somebody
signal 38:12,14	six 9:13 70:13	17:2,4 18:11	11:13 12:11
signature	size 10:20	77:4 79:11,25	129:18 134:20
155:13 157:20	56:24 70:13	83:22 84:9	somewhat
significantly	77:8 91:5 92:5	87:11 88:18	60:25 69:10
96:5	92:9,12,13	90:8 97:14	88:8,9 89:21
sill 27:12	105:2,24 106:2	100:6 103:11	sonic 25:5
sills 46:19,22	106:8 111:3,10	103:15,22	sorry 8:8 21:10
similar 59:9	114:11,22	104:19 106:21	43:9 61:17
70:1 83:11	122:17 126:25	107:2,25	70:4 79:22
89:20,23,25	127:1,7 128:2	128:12 134:22	88:16 106:18
99:1,5 101:15	128:12 129:23	135:1,4,17,18	121:3 123:19
102:9,19 111:7	133:8,11,11,17	146:14 149:11	125:13 128:21
116:20	141:14 152:11	smith's 112:10	130:17 141:10
similarities	skill $88: 19,21$	135:23 146:7	sort 22:25 46:7
59:12 99:23	slice 31:17	snake 1:4,11	47:18 50:11
100:10	33:21 43:21	2:10 3:2 4:2	51:6 59:20
similarly 75:11	61:25	5:5,8 6:23,24	65:4,9 69:12
101:15	slight 30:21	7:3,19,22,24	72:23 74:20
simple 50:13	slightly 41:16	8:1,7,9 9:3	83:23 84:20
84:25 90:13	88:22 101:14	10:16 19:17	145:20
133:9,20	slope 73:9	23:22 110:22	sorts 73:7
simply 14:1	slow 18:16	111:13,17	sought 14:12
92:8 153:16	42:12 70:2	112:3,4,8,16	sound 25:6,7
sir 7:218:11,14	125:14 138:7	113:18 120:1,3	37:22,23 38:3
9:17 84:23			41:13 42:3

[sound - start]

125:23	space 39:21	151:16 152:7,9	spent $48: 14$
sounded 81:11	65:20 94:20	152:11,22	55:6
sounds 14:20	104:20 152:4	153:4	splay 65:11
14:23 107:19	spacing 1:5 5:6	spacings 23:12	split 144:6
136:21	84:21,22 92:13	speak $18: 7,16$	145:13
source 22:18	94:8,12,18	84:9 100:7	spoke 65:13
84:21	95:20 105:8,18	153:11,12	spot 40:11
south 29:16	105:24,25	speakers 18:11	45:16 66:1
30:25 31:7,24	106:1,2,2,9,17	speaking 83:15	87:4
32:2,5,11,13,16	109:21 110:2,6	112:15 142:16	spread 22:20
32:24 33:3	110:7,12,15	speaks 12:9	square 29:10
35:11,20 36:2	112:2 114:5,6	specific 11:16	29:20 64:10,11
36:4,8,9,24	114:7,11,23	19:12 83:6	139:25 141:1
40:25 47:20,22	115:16,20	93:15 98:25	squares 22:14
48:2 49:16	116:14 117:6	specifically	squiggly 36:20
50:2,8 56:17	118:18 119:2,4	27:4 67:23	39:19
60:20 61:13	119:16 122:25	73:3	sr 4:4,5 8:10,12
65:11 69:17	123:5,7,10,25	specifics 20:25	8:16 9:10,13
70:19,21,22	124:4,17 125:7	speculate $127: 1$	28:14 49:6,22
71:15,19,20,21	127:1,7 128:3	127:3,20	65:1 68:6
75:23 76:1	128:12,14,17	133:22	97:17 111:19
78:19,22 82:7	129:5,11,22	speculating	111:21 112:8,8
96:18 102:21	130:10 131:2	130:4	stacks 86:9
115:16 116:15	131:16,20	speculation	stair 29:11
118:24 149:3	132:14 133:8	126:23 127:5	stand 145:5
southeast 33:9	133:19,24	127:16 128:9	standard 15:9
33:16 48:23	134:6 135:9	129:8 130:11	83:24 92:13
61:19,21,22	136:2,5,6,24	130:14 131:3	143:20
62:11,19 65:5	138:18 139:2	133:1,3 134:3	standards 90:9
67:7,25 111:25	140:22 141:15	speculative	stands 33:13
southern 47:24	143:1,5,8,10,15	127:17,19	72:4 114:15
southwest	143:19,19,25	speed 25:7	start 13:1
47:14 71:22,24	145:12,16,23	38:14	28:12,19 29:25
96:17 97:2	146:3,6 148:9	spend 148:8	34:2 79:13
103:24	148:10,24		105:17 107:24

[started - subsurface]

started 18:4,22	141:2,19	strength 60:8	studying 104:4
21:12 24:14	146:19 147:18	67:22 83:2	104:5
70:18	statutes 11:17	84:1 98:15	style 111:7
starting 5:13	106:15 152:21	134:23	styled 44:1
19:4,14 24:13	statutory 11:21	stricken 142:9	suarez 6:10
30:1 48:3	128:22 141:13	strictly 155:23	subject 12:19
53:20 68:7	142:4 154:23	strike 142:8	149:12 155:10
72:19 114:2	155:1	striking 155:25	subjective 89:7
155:1	stay 16:21	strong 20:16	submarine
state 11:17	106:25	27:14 42:8	37:20
20:13 48:21	staying 63:23	43:5 53:12	submitted
91:13 97:19	stenographic...	54:12 56:4,5	110:5 111:21
108:14 110:7	157:8	56:10 57:22	112:4,17
118:2 136:11	step 95:19	59:24 61:2,7	113:21 114:1
136:16 139:11	133:14	63:17 67:15	118:21 119:14
stated 87:24	steps 29:11	69:4,4,7 86:14	154:22
122:4 126:9	stipulated 5:17	86:21 87:25	subsea 58:6,14
135:4 146:1	stone 25:12	88:3 90:25	59:17 60:13
150:15	51:15 56:10	stronger 42:10	63:6 80:25
statement	stones 66:3	67:17	98:8,17
141:11 147:25	stop 58:12	strongest 90:24	subsection
statements	85:12	structural	124:15 125:17
154:14 155:10	stopped 156:2	37:16 40:14	130:21 142:24
states 15:3 19:9	stopper 57:1	56:7 65:25	143:12
statewide 124:5	stops 67:1	74:20 75:25	subsequent
125:6	storage 109:14	structurally	22:10 156:2
station 52:8	straddles	75:7 101:14	subsequently
81:22 86:12	143:25	structure 48:19	26:20
statute 12:2,18	strategy 74:15	58:3 59:21	substantial
13:2 16:7 92:4	93:16	61:10 66:2	21:22
105:6 110:7	stratographic	71:3,8,22	substantially
124:20,23	69:22,24 70:7	studies 92:19	143:17
136:14,17	70:8 75:14	study 90:16	subsurface
138:2,15	street 157:23	95:5,11 96:9	22:7,23 23:8
140:18,21,25			25:12 27:15

[subsurface - techniques]

29:23 44:5,13	supplemental	surprised	systems 91:8
46:18 57:4	118:22	129:15	t
61:6 109:20	support 20:7	surrounding	t 4:181:12
112:22 113:1	110:11 112:17	14:25 113:3	take 31:15 49:1
115:24 117:12	supported	survey 22:9	54:13 93:23
151:24 152:8	69:17 119:7	26:6 29:14	95:19 101:12
successful 22:2	supports	84:13,14,15,15	107:17 134:19
24:18 27:8	119:12,23	90:4 91:11,21	138:22 150:25
69:23 75:10	suppose 127:6	102:3 113:11	taken 17:18
successfully	130:16 137:25	136:19,23	52:4 157:4
27:22 54:19	supposed 125:7	137:7,16,19,24	takes 23:5
sudden 54:5	sure 6:15 13:5	138:4,12	37:13,17,19
59:23	14:4 15:2	139:22 141:6	48:7
sufficient 23:7	17:17 34:5	141:10 147:4,5	talk 21:6 36:14
110:5 118:17	39:18 43:18	147:7,16	72:13 90:11
sufficiently	49:2 64:24	surveyed 22:16	talked 42:1
32:21	74:10 77:8	surveys 84:17	128:5 149:14
suggest 60:15	80:14 92:16	102:4 111:5	talking 43:13
suggesting	94:11 95:18	sustain 13:9	55:18 58:18
94:21	99:20 105:21	103:12	64:25 72:17
suggestion	121:4 122:16	swear 7:11	74:8 78:5 97:1
32:18	124:2,22	sweep 23:3	139:3 147:14
suggests 69:3	125:15 133:14	sworn 7:14	target 111:22
summarize	146:2 154:16	17:5 108:9	113:5 114:17
18:21 24:5	surely $24: 8$	symbol 47:19	targeting 25:20
28:16 50:9	surface 22:13	47:23	26:7
55:17 99:22	29:20 30:4,18	system 89:11	team 11:1
summary 49:13	30:19 37:9,10	91:11,21	21:19,20,22
summer 6:10	37:17 38:21,23	136:19,23	tech 17:18
17:25 19:5	46:25 57:5,9	137:8,16,19,24	technical 110:4
summers 18:5	58:7 81:2	138:4,12	110:9,25
18:24	89:13,15	139:22 141:6	technically
supervised	137:12 151:17	141:10,12	154:7
23:18	151:20,25	143:9 147:4,6	techniques
		147:8,16	26:17,21

[tell - thoroughly]

tell 7:14 9:1	84:21 103:24	104:12 106:18	think 12:18
17:5,10 40:14	104:4 133:10	106:19 107:3	13:4 18:20
40:18 80:21	133:20	108:5,14	20:15 26:2,13
81:22 99:7,9	test 73:3 75:14	111:12 120:7	28:14,22 30:11
108:9 129:21	93:3	120:17 141:22	32:21 33:24
145:22	tested 54:17	142:13,21	35:3 40:1 41:1
telling 13:1	91:6 101:18	152:14 153:7,8	41:9 43:19
60:21	testified 7:15	155:8,22 156:1	46:20 49:4,23
tells 34:22	13:4 15:17	theory 47:9	55:8 57:11
temperature	17:6 92:20	thereof 143:7	59:16 60:8
38:4	95:9 108:10	147:10	66:4 69:25
ten 107:18	131:1 134:22	thereto 143:17	70:17,20 72:6
tend 70:3	testify 153:25	thesis 61:1	72:8,9 73:21
tense 150:22	154:5	thick 51:22	73:25 74:4,5
tent $47: 18,23$	testifying 7:4	54:20,22 57:6	74:16 76:9
term 36:19	17:10,12	57:10 69:18	83:1 84:24
110:20	107:25	73:6 98:13	85:21 87:18
terminate	testimony 3:3,7	thicker 98:14	89:22 91:15
64:23	3:16 50:25	thin 73:6	96:14,16,16,19
terminated	81:8 95:24	thing 23:8	96:22 98:14,15
46:10	112:10,13	28:22 29:6	99:18 101:16
terminates 67:4	118:16 121:7	34:9 35:5	102:3 106:20
69:13	122:9 124:8	36:23 41:8	128:7 136:1,12
terminating	126:10 142:11	72:13 73:7	138:20 139:17
69:15	146:7,15	80:15 99:11	141:6 142:5
termination	150:10,15	121:16 145:20	143:13 149:2
46:8 64:3,7,12	153:10 157:7	155:14	150:17,23,25
69:23,24 70:5	157:11	things 16:23	thinking 24:3
70:7	testing 112:20	23:14 28:19	25:17
terminations	texas 17:12	38:5 39:6,15	thinks 155:18
47:1	thank 6:21	41:15 51:18	thorough 74:21
terminology	16:10,12,16,24	63:25 68:25	103:9
100:20	79:5 82:25	90:2,7 107:1	thoroughly
terms 49:9	97:6 98:19	131:2 142:6,10	99:21
74:18 77:11,23	103:15 104:10		

[thousands - trough]

thousands	154:21,25	98:7,9,18	transcript
29:13,14 44:9	157:4,5	121:11 122:2	49:11 155:3,4
110:19 126:11	timed 37:4 58:3	topic $87: 7$	155:7
three 34:14	times 18:15,18	127:4	translate 90:8
40:22 111:4	39:11 40:4	topics 17:21	translating
113:10 146:15	74:22 89:16	tops 98:10	90:3
thum 3:16 6:4	title 10:5 12:8,9	100:24,24	trap 64:14,18
48:21 50:24	108:21	torpedo 25:5	65:15,16 66:5
101:2 107:15	today 5:15 6:20	total 30:11	66:17 67:3
107:17 108:6,8	6:22 16:23	122:3	69:1,22 70:8
108:14,16	92:20,23 95:9	toward 50:9	74:20 79:16
120:7,21 132:7	95:17 112:11	68:16	111:7 119:2
132:13 133:7	122:9 128:6,11	towards 68:18	trapped 65:23
141:22 142:3	142:16 150:11	78:9 90:23	65:24 78:19
142:23 145:10	together 10:13	121:1,11	trapping 64:13
148:3 151:16	25:10 47:3,10	township 1:8	65:13 70:16
152:20	54:14 84:19	5:7 136:24	71:20 72:12
thum's 32:18	86:10 91:2	trace 39:17,20	75:15,21
51:20 53:4	98:5	41:6,8,18,21	travel 38:12,14
57:17	told 12:23	82:21	travels 37:6
thumb 40:19	took 38:8 101:4	traces 39:24	traversal 36:9
time 6:14 16:14	tools 24:23	40:7 45:1 64:2	traverse 48:23
17:24 18:7	116:7,8,9	82:21	traversing
21:20 27:15	117:18,20	track 49:10	33:15
37:13 38:1	top 26:15 32:16	57:8	trends 65:4
39:1 40:10	34:20 39:9	tracking 11:23	tried 21:23
45:21 46:5	40:25 44:23	tract 122:14	22:1 86:10
48:14 55:6	50:16 52:24	124:19 143:16	triple 115:7
59:18 60:1,1,6	53:24,25 54:6	tracts 143:17	116:4,24
60:10 67:10	54:15,18 55:20	training 11:17	117:16
73:10 86:17,19	55:20 57:1,21	110:13 112:19	trips 21:24
86:20 90:6	58:19 61:6	113:15 151:22	trouble 88:17
93:5 125:14	62:10,13 63:4	transcribed	trough 41:17
133:8 149:4	63:4 80:24	157:8	41:19,21 42:2
151:5 153:21	81:3 84:5 98:6		42:11 43:6,7,8

Page 49
[trough - unit]

45:17 53:16,21	136:3	ultimately	149:15 151:16
53:23,23 54:5	turn 18:8,11	21:17 22:2	understandable
54:14,15,18	63:14 107:24	24:19 81:17	33:25
56:4 59:13,24	108:2	unable 134:16	understanding
61:3,7,9 62:14	turned 63:14	uncertainties	78:6 90:6,15
62:14,23 63:7	63:16	152:5	94:17,25
63:11 64:4	turquois 114:8	uncommitted	115:19 117:4
68:13 69:5,6	two 10:13 11:8	8:17,17 9:9,15	129:4 133:8
69:12,14 70:6	12:6 31:2,5	10:7 12:5,5,8	148:19 149:7
71:13,14,17,18	33:1 38:6	12:12 13:16,16	understands
72:2 74:6 84:4	39:15 49:16	15:18,19	13:2
86:15,24 87:22	65:10 68:21,24	under 61:4	understood
88:6 101:25	71:7 79:1	63:18 72:18,20	153:13
102:15 103:1	85:16 91:24	95:12 115:20	undertaken
true 59:2 88:18	92:18,18 96:19	117:6 123:24	95:11
90:12,17,17	98:10,20	123:25 125:10	undertook
121:16 129:22	104:14 126:16	152:21 157:6,9	92:20
131:1 147:14	143:25 145:13	underground	union 136:16
157:10	145:16	109:13 150:5	unique 86:6
truth 7:14 17:5	type 25:4 37:8	underlain	unit 1:65:6
57:20 89:14	59:12 69:14	97:23	8:17 9:2,3 10:7
108:9	90:16 110:21	underlying	10:7,9,11,15,21
try $18: 8,10$	112:20	53:11	10:24 11:6,13
54:13 55:10,13	types 24:10	underneath	12:6,9,10,13,14
74:21 79:24	112:16	54:12 61:3,7	15:19,20 16:1
84:3 85:18	typically 11:22	63:2,14 72:22	19:21,25 21:1
89:10,15 133:6	29:23 51:15	understand	23:17 26:18,23
trying 11:24	65:19 110:18	12:7 22:1 34:5	26:25 27:18,22
12:1 13:8 14:4	typo 33:16	81:8 83:1 91:3	28:4,24,25
35:1 38:20	u	94:7 126:11	29:2,15,17,19
48:14 85:11,24		128:20 130:18	30:15 35:16,18
86:1 87:8,14	$116: 25$	137:10 143:8	35:21,24,25
89:14 90:2,8	ultimate 49:21	143:18 145:11	36:1,25 37:1
96:15 103:9	132:3 149:22	146:8 147:5,7	49:15,18,25
130:13,16,18	150:6	147:21 149:2	50:2,8 51:23

[unit - variance]

55:3 58:1	116:14,15,17	united 19:8	upper 99:7
59:15,15,22	117:6 118:13	unitized 94:9	usa 109:11
60:4,5,20 61:4	119:2,4,13,15	units 10:14	use 11:22 22:11
61:20,21 62:1	119:17,19,19	52:14 67:14	25:13 27:8
62:4,7,17,20,21	119:21,22,24	77:24 94:20	37:21 39:6
62:24 63:3,10	120:5 122:25	99:11 106:17	45:14 50:12
63:12,19,23	123:5,7,10,24	114:6,12,19	72:3 90:10
65:6 66:5,14	123:25 124:5	124:4 125:6,7	134:8 140:1,22
66:24 68:8	124:17 125:4	136:14 137:17	141:8 148:20
70:22,25 71:1	126:1,1,7,15,16	137:20 138:18	used 24:3 137:4
71:9,12,14,17	126:17 127:1,7	140:25 141:15	useful 58:3
72:13 74:6	128:3,12,14,17	143:5,10	150:23
75:9,9,12 76:1	129:5,11,23	145:12 147:20	user 15:10
76:2,5,10,16	130:10 131:2	148:10,17	using 22:25
77:6,7,13,14,20	131:16,20	151:16 152:11	26:16,21 38:20
78:4,8,15,21,22	132:14,24	unknown 50:13	49:7 57:19
78:24 91:4,5	133:8,17,19,24	59:10 60:19	60:10 62:18
91:16 92:5,12	134:2,6,11	100:2	78:6 93:2
92:13,13,16,17	135:9,14 136:2	unleased	104:2,20
92:18 93:2	136:18,24	111:20	136:15,25
94:8,12,18,23	137:22,23,23	unmolested	139:19
95:12,20 96:6	138:3,5,23	37:7	usually 95:1
96:25 97:21	139:2,2,8,13,14	unnecessary	utah 19:13
99:10,13,14	139:21,24	5:19 23:10	utilities 23:13
102:18,21,25	140:4,6,8,9,10	105:7 125:22	utility 51:12
104:20 105:2,8	140:13,13,22	127:14,18	utilize 111:1
105:10,18,24	141:11 143:10	130:25 145:23	utilized 113:13
105:25 106:1,2	143:15,20,21	unproductive	v
106:3,9 109:22	143:25 145:23	61:10 105:15	vaguely 149:13
110:11,16	146:6,16 147:3	unquote 116:2	valuable 19:1
111:10,20	147:15 148:9	unsuccessful	value 30:7 63:6
112:1 114:5,7	148:24 149:9	23:10	values 51:10
114:13,14,15	150:3,12 152:7	untested 32:25	81:1
114:16,18,23	152:7,22 153:4	update 152:10	variance
115:16,21			125:10,11,12

[variation - wells]

variation 125:3	views 70:16	wants 153:10	125:25 126:4,7
varies 15:10	virginia 17:18	waste 74:21	126:12 127:6
102:3 110:7	virtually 136:8	104:20,23	128:17 129:6
various 17:20	vis 148:9,9	105:1,4,16,20	130:8 131:24
24:24 27:17	volcanic 46:22	105:21 106:1,8	137:20 140:2
44:2 46:7	volume 80:17	106:14 125:21	146:19 147:7
55:23 72:3	84:8,8,10,11	126:2,5,8,18	ways 93:7
135:2	86:6 102:1,2	127:2 129:3	102:7
vary 39:2	107:24 110:25	130:24 131:16	weak 54:3
velocity 37:22	volumes 86:7	131:20,24	59:23 63:17
37:23 38:1,2	w	132:15,18	67:16 68:15
38:22 53:15,18	w 157:23	133:9,21	69:13,15
54:9,10,11	wade 3:3 6:22	149:10,16	weaker 88:1,5
101:11	7:8,13 112:13	150:5	90:22
vent 106:3	waiting 154:4	wasting 105:18	website 115:13
venting 104:24	walk 113:25	watching 7:5	weeds 55:1
106:5,14	want 13:15	$47: 1$	welcome 13:18
venture 21:16	21:6 28:7 29:4	water 23:14	16:21 106:25
version 31:11	36:14,15,18	37:23,23 38:2	107:1
versions 51:1	40:4 42:25	38:3,6,16,22	wellbore 29:23
versus 46:1	43:5 52:9 55:2	53:5,6 54:2	51:7,10 53:3
72:4	$60 \cdot 24$ 61:1	55:22 56:3,11	53:22 57:18
vertical 31:16	64:24 72:13	56:14,21,25	58:20 80:23
58:10,24 59:3	74:13 85:15	57:2,3,6,8,9,16	101:13
63:3 98:2	86:22 93:3,23	57:17,21 58:5	wells 20:19,20
124:16 143:14	99:20 105:6,7	59:16 60:7,9	21:18,25 23:10
143:20	107:24 127	60:12,18 63:21	23:10,14,22
vertically 59:4	137:22	68:11 84:7	24:1,1,3,6,8,16
vibrate 55:10	$142: 3144: 1$	118:5	24:17,22 25:15
vibrator 23:1	150:21 153:11	way 39:11	26:3 43:15
vice 21:11	$153: 12$	43:21 44:10	60:11 70:11,12
view 19:1 49:24	wanted $27: 1$	46:12 47:8	70:13 74:23
66:16 82:7	$59: 773: 3,8$	51:11 67:25	76:14 102:12
105:10 150:9		72:5 96:23,25	102:13 104:6
150:11		97:1 123:22	105:7 110:19

[wells - zoomed]

