

In interpreting, communicating or providing information and/or making recommendations, either written or oral, as to logs or test or other data, type or amount of material, or Work or other service to be furnished, or manner of performance, or in predicting results to be obtained, the Contractor will give the Company the benefit of the Contractor's best judgment based on its experience and will perform all such Work in a good and workmanlike manner. Any interpretation of test or other data, and any recommendation or reservoir description based upon such interpretations, are opinions based upon inferences from measurements and empirical relationships and assumptions, which inferences and assumptions are not infallible, and with respect to which professional engineers and analysts may differ. ACCORDINGLY ANY INTERPRETATION OR RECOMMENDATION RESULTING FROM THE SERVICES WILL BE AT THE SOLE RISK OF THE COMPANY, AND THE CONTRACTOR CANNOT AND DOES NOT WARRANT THE ACCURACY, CORRECTNESS OR COMPLETENESS OF ANY SUCH INTERPRETATION OR RECOMMENDATION, WHICH INTERPRETATIONS AND RECOMMENDATIONS SHOULD NOT, THEREFORE, UNDER ANY CIRCUMSTANCES BE RELIED UPON AS THE SOLE OR MAIN BASIS FOR ANY DRILLING, COMPLETION, WELL TREATMENT, PRODUCTION OR FINANCIAL DECISION, OR ANY PROCEDURE INVOLVING ANY RISK TO THE SAFETY OF ANY DRILLING ACTIVITY, DRILLING RIG OR ITS CREW OR ANY OTHER INDIVIDUAL. THE COMPANY HAS FULL RESPONSIBILITY FOR ALL DECISIONS CONCERNING THE SERVICES.

BOREHOLE RECORD				Last Edited: 10-NOV-2022 09:17
Bit Size inches		Depth From feet		Depth To feet
8.500		1135.00	5501.00	
CASING RECORD				
Type	Size inches	Depth From feet	Shoe Depth feet	Weight pounds/ft
CASING	9.625	0.00	1135.00	40.00

PRIMARY SERVICES ACQUIRED: MGS: COMPACT GAMMA RAY
MDN: DUAL SPACED NEUTRON
MPD: PHOTO-DENSITY
MSS: MONOPOLE SONIC.
MAI-MFE: ARRAY INDUCTION

HARDWARE USED:	MPD: 4 inch PROFILE PLATE
	MIS-D: DOUBLE BOWSPRING TO SIDEWALL THE MDN FROM ABOVE.
	MVC: USED TO SIDEWALL THE MPD FROM BELOW.
	MSS: 0.5 INCH STANDOFF AT MIDDLE.
	MSS: 0.5 INCH INLINE STANDOFF AT TOP AND BOTTOM
	MFE: 0.5 INCH INLINE STANDOFF AT TOP AND BOTTOM
	MAI: 0.5 INCH PINEAPPLE STANDOFF ON BOTTOM

CORRECTIONS APPLIED:
2.65 G/CC MATRIX DENSITY USED TO CALCULATE POROSITY.

BARITE CORRECTION WAS APPLIED TO THE PHOTO DENSITY DUE TO ITS PRESENCE IN THE MUD SYSTEM
BARITE CORRECTION WAS APPLIED TO THE NEUTRON DUE TO ITS PRESENCE IN THE MUD SYSTEM

DEPTH CONTROL:
PRIMARY DEPTH REFERENCE USED WAS PIPE STRAP
PRIMARY DEPTH SYSTEM USED WAS MD TOTCO
LOGGING TOOLS DEPLOYED AT 5378.99 ft .
$\| B O T T O M$ OF LOGGING TOOLS AFTER DEPLOYMENT : 5481.0 ft .
LOGGING TOOLS DEPLOYED BY USING MESSENGER COMPACT WELL SHUTTLE CONVEYANCE.

BOREHOLE CONDITION:
BOTTOMS UP CIRCULATED BEFORE TOOLS DEPLOYED..
A HEAVY MUD WAS PUMPED PRIOR LOGGING UPHOLE AS PER CLIENT REQUEST.

POST ACQUISITION PROCESSING:
DUE TO PRESENCE OF A VERY HIGH RESISTIVITY MATERIAL IN THE FORMATION THE INDUCTION TOOL GAVE THE COMMAND TO CLOSE THE DENSITY CALIPER CALIPER IN THE INTERVAL 4386.2 FT to 4321.4 FT.

HOLE VOLUME FROM 5422.27 FT to CASING SHOE = 2480 CU.FT
ANNULAR HOLE VOLUME FROM 5422.27 FT to CASING SHOE $=1790$ CU.FT

ANNULAR VOLUME WAS CALCULATED BASED ON FUTURE CASING SIZE OF 5.5 inches.
ANNULAR AND HOLE VOLUMES CALCULATED FROM DENSITY CALIPER MEASUREMENTS.

Depth Based Data - Maximum Sampling Increment 10.0 cm Filename: C:ILOGSISnake RiverlBarlow 3-14IMAIN PASS.dta System Versions: Logged with 22.01.1627 Processed with 22.01.1627 Plotted with 22.01.1627

				V															'						
				\%i															iv	\}					7
				i															-	\}					
								149 ${ }^{\circ}$																	
				-	-																				
				$\hat{}$															+	\geq					
				-				2200											\cdots	1				;	
					8			2200											i						
+				; $\}$															\cdots					:	3
				ह-															$\stackrel{+}{+}$?
				<	-						(-				:)
+				iV															! ?						
				:	,						O								' ${ }^{\prime}$	\bigcirc					
				is															i	3				:	
				it															i	5					
	-App		nt Wa	Vater	es,														i)	\}					
?				lí	<														,3/5-5	Com	pens	sate	ed S		\rightarrow
H			-Bit	Size:	\}														2					-	
				\cdots	<			Array Ind. Two R	Res R										i						
+				$\frac{1}{c^{\prime}}$	5																				
!					$\}$			Array Ind. Two R		$85=$									+i						\bigcirc
				i	3			Array Ind. Two R											4						-
					$\frac{3}{3}$			Array In 2250 no R																	
				:	\}			Array Ind. Twor	res 3	$30 \rightarrow$															
				i	3			Array Ind. Two	res 2	$20 \rightarrow$)	,					
				\cdots																					
				i				Corected Gamm																	
I				; 3												dston	ne D	ensit	ty ${ }^{\text {Kor }}$ -						
-				:	-														i						,
				:															if ${ }^{\text {i }}$	sity	Corr	rectio	n		
?				${ }^{2}$ ¢ ${ }^{\circ} \mathrm{D}$																					
								1200																	
				\}										andst	tone	Neutr	tron	Po	\rightarrow						
				$<$																					
								150°											,	ζ					
				2																\}					
,				\bigcirc				1700																	
,																				\bigcirc					
					\checkmark			2300																	
					\%														8					:	
					\%															,					
				,	\%																				
?																									
+				,																ζ					
)															*						
																			,						
<				,)								Y	Σ)
T				i]							(i<					-	
				1							S								ì						$\%$
,								$151{ }^{\circ}$: 3						
,																									
,																			is	L					
T																			-		3			:	
-				\cdots				- 2350																	
				$\vdots 3$,						
\bigcirc				-							(,					:	
?											\bigcirc								+	2					
																			+ ;					?	
				\%)								1--					-	
				it				-			-								ij						
								-											-						
																			is						
					$\}$														-						
																			+						
								152°											i,						
																			K						

General Constants All 000

General Parameters

Mud Resistivity
Mud Resistivity Temperatur
Water Level
Borehole Fluid Processing
Hole/Annular Volume and Differential Caliper Parameters
HVOL Method
Single Caliper
HVOL Caliper 1 Density Caliper
HVOL Caliper 2
Annular Volume Diameter Caliper for Differential Caliper
2.680
75.000
0.000

Wet Hole

```
Rwa Parameters
Porosity used
Base Density Porosity
Resistivity used
Array Ind. Two Res Rt
RWA Constant A
                                    0.620
RWA Constant M
2.150
SWIAPOR Tool Source 0.000
```

Array Ind. Two Res Rt 0.620 2.150 0.000

Gamma Calibration MGS-D.A 184
Field Calibration on 07-NOV-2022 10:01

	Measured	Calibrated (API)
Background	135	91
Calibrator (Gross)	902	610
Calibrator (Net)	767	519

Gamma Calibration Tolerances MGS-D.A 184
Ratio

Counts/API

Gamma Constants MGS-D.A 184

Gamma Calibrator Number
GRCC119
GRC-M Calibrator Jig in Use?
Inactive Background Jig in Use?
Mud Density
Caliper Source for Processing
Tool Position
Potassium Equivalence
K Mud Concentration

High Resolution Temperature Calibration MGS-D.A 184
Field Calibration on 03-AUG-2022 11:17

	Measured	Calibrated(Deg F)
Lower	32.00	32.00

High Resolution Temperature Constants MGS-D.A 184
Last Edited on 03-AUG-2022 11:16
Pre-filter Length
Neutron Calibration MDN-C.A 533
Base Calibration on 05-NOV-2022 14:46
Field Check on 07-NOV-2022 09:36
Base Calibration

		Measured	Calibrated (cps)	
	Near	Far	Near	Far
	2884	89	3714	110
Ratio		32.585		33.764

Field Calibrator at Base
Calibrated (cps)
21643228
0.671

Ratio
Calibrated (cps)
21163147
Ratio
0.672

Neutron Calibration Tolerances MDN-C.A 533

Neutron Constants MDN-C.A 533

Neutron Source Id
Neutron Jig Number
Air Hole Processing
Caliper Source for Processing
Stand-off
Mud Density
Limestone Sigma

Sandstone Sigma
7.00
4.70
cu
Formation Pressure Source
None
Formation Pressure N/A kpsi
Temperature Source None
Temperature N/A
0.00
degrees F
Mud Salinity

Sonic Constants MSS-D.A 401 kppm

Not Applied
None Not Applied
None

N/A
Formation Fluid Salinity Source
Formation Fluid Salinity Applied
Salinity Correction
micro-sec/ft
Maximum Boundary Contrast
70.00

Fluid Transit Time 189.00

Limestone Transit Time
47.50

Sandstone Transit Time
55.50
43.50 micro-sec/ft micro-sec/ft micro-sec/ft
Dolomite Transit Time micro-sec/ft
Sonic used for Porosities
Correction for Sonde Skew
3-5' Compensated Sonic

Cycle Stretch Algorithm Applied

MN3FT Applied N/A micro-sec
MX3FT
N/A
83.12 micro-sec micro-sec/ft

Sonde Mode
Hole Type

Full Waveform
Open Hole

Sonde Parameters

	Measured	Calibrated Offset
Free Pipe	0.0000	

Peak Amplitude Source

Waveform	Start Time (micro-sec)	Width (micro-sec)) Pre Gain	Start Gain
3'	N/A	N/A	N/A	N/A
4'	N/A	N/A	N/A	N/A
5'	N/A	N/A	N/A	N/A
$6{ }^{\prime}$	N/A	N/A	N/A	N/A
Processed Fixed Gate Parameters				
Waveform Used For Processing 3 foot				
Start Time	micro-sec) End Time	(micro-sec)	Discriminator (mV)	Depth (ft)
	. 00	0.00	0.00	
	. 00	0.00	0.00	0.00 0.00
	00	0.00	0.00	0.00
	. 00	0.00	0.00	0.00
	. 00	0.00	0.00	

Full Waveform Parameters

Use 3' Waveform to derive TR	No	
Use 4' Waveform to derive TR	No	
Use 5' Waveform to derive TR	No	
Use 6' Waveform to derive TR	No	
3' Waveform Discriminator Level	0.30	mV
4' Waveform Discriminator Level	0.30	mV
5' Waveform Discriminator Level	0.15	mV
6' Waveform Discriminator Level	0.15	mV

Waveform Discriminator Filter Not Applied
Semblance Window Width 150.00

Semblance Processing Enabled Yes
Tracking Boxes Enabled In Processing
Yes

Factory Loop Calibration

	Measured Signal (unitless)	Reference Conductivity (mmho/m)	Calibration				
Array	Low	High	Low	High	Gain	Offset	
1 (near)	16.9	474.4		9.3	966.2	2.092	-26.1
2	6.0	377.0		7.6	821.4	2.194	-5.7
3	4.3	258.7		5.2	566.0	2.204	-4.2
4 (far)	1.4	135.1		2.6	279.2	2.068	-0.2
Array Temperature		72.0	Deg F				

Tool Checks

25-OCT-2022 16:07

Array Factory Reference ($\mathrm{mmho} / \mathrm{m}$)			Before Survey (mmho/m)		
			Low	High	
1 (near)	12.9	3831.7	12.9	3830.7	
2	30.6	3580.3	30.6	3578.7	
3	26.9	3068.5	26.9	3067.1	
4 (far)	20.4	2039.4	20.4	2038.5	
Array Temperature		89.7		44.6	Deg F

Tool Zero Corrections
Array

1 (near)	0.0	$\mathrm{mmho} / \mathrm{m}$
2	0.0	$\mathrm{mmho} / \mathrm{m}$
3	0.0	$\mathrm{mmho} / \mathrm{m}$
4 (far)	0.0	$\mathrm{mmho} / \mathrm{m}$

Induction Check Tolerances MAI-B.J 299

Low Array 1
Low Array 2
Low Array 3
Low Array 4

High Array 1
High Array 2
High Array 3
High Array 4

Last Edited on 11-NOV-2022,04:27
inches
inches
degrees
inches
mhos/metre mhos/metre
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Calibration Site Corrections

Channel 1	0.00	mmhos/metre
Channel 2	0.00	mmhos/metre
Channel 3	0.00	mmhos/metre
Channel 4	0.00	mmhos/metre

Symmetrised Receiver Gains

Receiver 1	1.00	
Receiver 2	1.00	
Receiver 3	1.00	
Receiver 4	1.00	
Apparent Porosity and Water Saturation Constants		
Archie Constant (A)	1.00	
Cementation Exponent (M)	2.00	
Saturation Exponent (N)	2.00	
Saturation of Water for Apor	1.00	v/v
Resistivity of Water for Apor and Sw	0.05	ohm-m
Resistivity of Mud Filtrate for Sw	0.00	ohm-m
Source for Rt	0.00	
Source for Rxo	0.00	

Caliper Calibration MPD-D.A 513

Base Calibration		
Reading No	Measured	Calibrator Size (in)
1	17281	3.99
2	25452	5.96
3	34140	7.96
4	42314	9.85
5	5169	11.92
6	N/A	N/A

Base Calibration on 05-NOV-2022 16:25 Field Calibration on 07-NOV-2022 09:38

Field Calibration
Measured Caliper (in) Actual Caliper (in)
$7.87 \quad 7.96$

Caliper Calibration Tolerances MPD-D.A 513

Long Arm Field Cal.
7.87

in

Photo Density Calibration MPD-D.A 513
Density Calibration
Base Calibration

Background
Reference
Reference 2

Field Check at Base
$1078.0 \quad 1297.9$

Field Check
$1086.7 \quad 1301.3$

PE Calibration				
Base Calibration		Meas		Calibrated
	WS	WH	Ratio	Ratio
Background	204	966		
Reference 1	18502	42019	0.446	0.369
Reference 2	5367	17469	0.313	0.273

Field Check at Base
204.0
966.3

Field Check
$204.6 \quad 974.0$

Photo Density Calibration Tolerances MPD-D.A 513

Density Constants MPD-D.A 513

Density Source Id	P44268B
Nylon Calibrator Number	DNCE666
Aluminium Calibrator Number	DACD535
Density Shoe Profile	4 inch
Caliper Source for Processing	Bit Size
PE Correction to Density	Not Applied
Mud Density	1.31
Mud Density Type	Barite
Mud Filtrate Density	1.00
Dry Hole Mud Filtrate Density	1.00
DNCT	0.00
CRCT	0.00
Density Z/A Correction	Hybrid
Precision Enhanced Density Processing	Not Applied
Density Detector Type	Compensated Density
Matrix Density (gm/cc)	Depth (ft)
2.65	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00
0.00	0.00

DOWNHOLE EQUIPMENT

Shuttle Running Tool 3.5"

SRT-A.A59 LG: 5.90 ft WT: 37.5 lb OD: 2.520 in

Compact Knuckle Joint
SKJ-E.B 456 LG: 2.17 ft WT: 24.3 lb OD: 2.244 in

Compact Linker
MLK-E.A 107 LG: 14.23 ft WT: 99.2 lb OD: 2.240 in

Compact Linker
MLK-E.A 101 LG: 14.23 ft WT: 99.2 lb OD: 2.240 in

Compact Knuckle Joint
SKJ-E.A 349 LG: 2.17 ft WT: 24.3 lb OD: 2.244 in

200 v Compact Battery Sub
MBS-G.A 117 LG: 17.06 ft WT: 123.5 lb OD: 2.240 in

Compact Tool Isolator sub.
MTI-C.A 150 LG: 1.54 ft WT: 13.2 lb OD: 2.244 in

Compact Short Gamma
MGS-D.A 184 LG: 3.41 ft WT: 24.3 lb OD: 2.244 in
Compact Collar Locator
MCL-C.A 144 LG: 3.17 ft WT: 26.5 Ib OD: 2.244 in

Compact Knuckle Joint
SKJ-E.B729 LG: 2.17 ft WT: 24.3 lb OD: 2.244 in

Compact Swivel Head Adaptor
SHA-J.B 705 LG: 2.30 ft WT: 22.0 lb OD: 2.244 in

Compact Inline Bowspring sub
MIS-D.B 849 LG: 5.70 ft WT: 33.1 lb OD: 2.240 in

Compact Neutron
MDN-C.A 533 LG: 5.04 ft WT: 50.7 lb OD: 2.244 in

Compact Density/Caliper
MPD-D.A 513 LG: 9.59 ft WT: 90.4 lb OD: 2.244 in

Compact Vee Arm Caliper
MVC-A.A 148 LG: 8.06 ft WT: 61.7 lb OD: 2.244 in

Compact Knuckle Joint
SKJ-E.B 705 LG: 2.17 ft WT: 24.3 lb OD: 2.244 in

Compact Inline Bowspring sub
MIS-D.B 830 LG: 5.70 ft WT: 33.1 lb OD: 2.240 in

Compact Inline Standoff sub
MIS-E.B 774 LG: 2.14 ft WT: 15.4 lb OD: 2.244 in

Compact Sonic
MSS-D.A 401 LG: 12.52 ft WT: 72.8 lb OD: 2.244 in

Compact Inline Standoff sub
MIS-E.B 788 LG: 2.14 ft WT: 15.4 lb OD: 2.244 in

Compact Focussed Electric
MFE-C.A 426 LG: 6.05 ft WT: 48.5 lb OD: 2.244 in

Compact Inline Standoff sub
MIS-E.B 791 LG: 2.14 ft WT: 15.4 lb OD: 2.244 in

Compact Induction
MAI-B.J 299 LG: 10.81 ft WT: 48.5 lb OD: 2.240 in

Total Length: $147.88 \mathrm{ft} \quad$ Weight: 1086.9 lb

78.17 ft

NPRS - Sandstone Neutron Por.

AVOL - Annular Volume
HVOL - Hole Volume
CLDC - Density Caliper
DPRS - Sandstone Density Por.
DEN - Compensated Density
DCOR - Density Correction
PDPE-PE

VCAD - Vee Arm Caliper A

TR11-4' Transit Time
TR21-3' Transit Time
TR12-6' Transit Time
TR22-5' Transit Time

SPRS_W - Wyllie Sst Sonic Por. DT35-3-5' Compensated Sonic
16.05 ft

FEFC - Shallow FE (Phase Corr.)

R40T - Array Ind. Two Res 40 R30T - Array Ind. Two Res 30 R20T - Array Ind. Two Res 20 R60T - Array Ind. Two Res 60 R85T - Array Ind. Two Res 85

All measurements relative to tool zero

COMPANY		SNAKE RIVER OIL AND GAS, LLC			
WELL		BARLOW \#3-14			
FIELD		WILDCAT			
PROVINCE/COUNTY COUNTRYISTATE		PAYETTE			
		U.S.A. / IDAHO			
Elevation Kelly Bushing	2176.50	feet	Last Reading	1135.00	feet
Elevation Drill Floor	2176.50	feet	First Reading	5475.50	feet
Elevation Ground Level	2164.00	feet	Depth Driller	5501.00	feet
			Depth Logger	5501.00	feet

