

In interpreting, communicating or providing information and/or making recommendations, either written or oral, as to logs or test or other data, type or amount of material, or Work or other service to be furnished, or manner of performance, or in predicting results to be obtained, the Contractor will give the Company the benefit of the Contractor's best judgment based on its experience and will perform all such Work in a good and workmanlike manner. Any interpretation of test or other data, and any recommendation or reservoir description based upon such interpretations, are opinions based upon inferences from measurements and empirical relationships and assumptions, which inferences and assumptions are not infallible, and with respect to which professional engineers and analysts may differ. ACCORDINGLY ANY INTERPRETATION OR RECOMMENDATION RESULTING FROM THE SERVICES WILL BE AT THE SOLE RISK OF THE COMPANY, AND THE CONTRACTOR CANNOT AND DOES NOT WARRANT THE ACCURACY, CORRECTNESS OR COMPLETENESS OF ANY SUCH INTERPRETATION OR RECOMMENDATION, WHICH INTERPRETATIONS AND RECOMMENDATIONS SHOULD NOT, THEREFORE, UNDER ANY CIRCUMSTANCES BE RELIED UPON AS THE SOLE OR MAIN BASIS FOR ANY DRILLING, COMPLETION, WELL TREATMENT, PRODUCTION OR FINANCIAL DECISION, OR ANY PROCEDURE INVOLVING ANY RISK TO THE SAFETY OF ANY DRILLING ACTIVITY, DRILLING RIG OR ITS CREW OR ANY OTHER INDIVIDUAL. THE COMPANY HAS FULL RESPONSIBILITY FOR ALL DECISIONS CONCERNING THE SERVICES.

Powered by Weatherford tools, acquisition systems, and software

Bit Size inches		Depth From feet		Depth To feet
8.500		1130.00		5500.00
CASING RECORD				
Type	Size inches	Depth From feet	Shoe Depth feet	Weight pounds/ft
SURFACE	9.625	0.00	1130.00	40.00

HARDWARE: MAI: INLINE CENTRALIZER FITTED AT BOTTOM MISD CENTRALIZER AT TOP
MSS: MISD CENTRALIZER BELOW AND MTC WITH BASKET ABOVE
MTC: OVERBODY CENTRALIZER ON THE TOOL
MPD: 8" PROFILE PLATE FITTED
MDN: DUAL BOWSPRING ECCENTRALIZER FITTED
MATRIX FOR POROSITY CALCULATION: 2.65 G/CC
ANNULAR VOLUME BASED ON 5.5" PRODUCTION CASING
FOR HVOL AND AVOL PLEASE SEE LOG
CREW: ARVELO, GARCIA, TODD, MUIR

1 INCH MAIN PASS

Depth Based Data - Maximum Sampling Increment 10.0 cm Filename: C:ILOGSISNAKE RIVERVIRVIN \#1-19IMP.dta
System Versions: Logged with 22.11.1632 Plotted with 22.11.1632

		\bigcirc									,																	
		\}	-																									
		,																										
		L																										
		?	,																									
		$\}$																										
		ζ	,																									
		5																										
		S																										
		\{	,																									
		3																										
		$\}$																										
		$\}$																										
		$\}$							600																			
		\sum																										
		ζ																										
		\bigcirc																										
		,																										
		\}																										
		\sum																										
		\bigcirc	-																									
		\bigcirc	,																									
		\pm																										
		<	\bigcirc																									
		\}																										
		\leqslant	-																									
		<	,																									
		L																										
		Σ							650																			
	<																											
		,																										
													-															
	1						,	-																				
	\%																											
		\}					-	-																				
		<																										
		<																										
		<																										
		\}											-															
		<																										
		ζ							700																			
		3																										
		$<$																										
		\}																										
		\leqslant	\leftarrow M	MCG		Corr	recte	ed Gamma																				
		3																										
		-	,					-																				
		\rangle																										
		$\}$											-															
	δ																											
	\bigcirc)																										
	\%							-																				
	3	3							750																			
	\}	\%																										
	?																											
	f	,																										
	P)											-							-								
	,												-			-												
	<																											

解

-			-	C		;														i							
-				Σ																$2 i-2$							
																				,							
				T																,							
				Σ															5	,							
,				\cdots																-							$=$
1				- +															5	- S-	---				,		
-				82-								-								,							
5)							
,				C																\bigcirc							
-1				-				1250												- 2							
$x-7$				-																5				\}			
-				-																$\xrightarrow{3}$	\cdots						
i				(2)																C-							
,				$\cdots=$																\&	\cdots			\rangle			
?				A5.																\} =							
${ }^{2}$				$x=-1$						-										\%							3
?				ce															!	-)	,		
\%				8-1.						:										3)							
				<	-->	:				, ${ }^{\text {\% }}$,	---)	,		
				-																\%							
				1																i))			
				\bigcirc															\leq	C							
				$\rightarrow \infty$																- i							
r				S																1'				,			
3				\lll																; $\}$							
¢				\cdots	?			1300												1							
-				\cdots	2)									-							
${ }^{\prime}$				\cdots							3									水							
7					\cdots	.					\%									-				2	-		
e				为							3									-							
				\therefore	P:						3									i]	,						
${ }_{2}$:							3									, i>	\sum						
1					3	:					3									-	-				,		
1											3									\cdots					\square		
1				\%							3									-i	5						
E				\cdots							:									¢!	$<$			$<$,		
5				\%	\}:						3									-	$\}$						
				\bigcirc																[->							
1				-,							3									\cdots					\%		
				$\because<$							3									-7	$\}$				I		
-1				-	$<$						\%									- ;							
					2			1350			.									2	1						
				\ldots	2?			${ }^{1400}$			i									-	7					-	
-				:							:									-					,		
1				:							:									+	\bigcirc						
1 1				i.							\%									,	S				3:		
1											\%									,	\cdots			\bigcirc	-		
$\underline{1}$:							:									ì	\}				\square		
6				-	7			,			i									7)	\bigcirc				-	T	
2				E	,															ci							
3				\cdots	R															, -	\}			<			
+				-																-							
1				-																-	<						
- ${ }^{-1}$							-													5	,			$\}$,		
i					3 ;						1									-							
$\frac{-1}{2}$				\therefore;			-													?)			
								1400																			
				<																, is							
- 7																				$=:$,			
4				-																- -2				,			
																				¢il							
S1																				i!				<			
-1				?							3									i				?	-		
${ }^{2}$																				-							
-				$\vdots 3$							\%									$\stackrel{+}{4}$,		
i				--2.						\rightarrow										\leq							
$!$				$\therefore<$, 3							

Accelerometer Calibrator Number
000
Accelerometer Temperature Characterisation X Accelerometer

Serial Number	1385
Calibration Date	$25-$ Feb-2013

	BO
Bias (g)	B0
	$0.00000 \mathrm{e}+00$
SFO	
Scale Factor $(\mathrm{mA} / \mathrm{g})$	$3.00000 \mathrm{e}+00$

Y Accelerometer
Serial Number 1287
Calibration Date 31-Jan-2013

Bias (g)	B0
	$0.00000 \mathrm{e}+00$ Scale Factor $(\mathrm{mA} / \mathrm{g})$ SFO
$3.00000 \mathrm{e}+00$	

Z Accelerometer
Serial Number $\quad 1261$
Calibration Date 31-Jan-2013
$\begin{array}{rr}\quad B i a s(g) & 0.00000+00 \\ \text { SFO }\end{array}$
Scale Factor (mA/g) $\quad 3.00000 \mathrm{e}+00$

B1
$1.64598 \mathrm{e}-05$
SF1
$2.66357 \mathrm{e}-04$

B1
$1.52213 \mathrm{e}-05$
SF1
$2.77451 \mathrm{e}-04$

B2
$3.28954 \mathrm{e}-08$
SF2
$3.96431 \mathrm{e}-07$

B3
-1.30747e-10
SF3
$3.62405 \mathrm{e}-10$

B3
$3.43698 \mathrm{e}-10$
SF3
$2.72571 \mathrm{e}-10$

$-4.98732 \mathrm{e}-08$	$3.43698 \mathrm{e}-10$
SF2	SF3
$3.32682 \mathrm{e}-07$	$2.72571 \mathrm{e}-10$

B3
$1.76340 \mathrm{e}-10$
SF3
9.98453e-10

Neutron Calibration MDN-C.A 501
Base Calibration

	Measured		Calibrated (cps)	
	Near	Far	Near	Far
	3166	97	3714	110
Ratio	32.802		33.764	

Field Calibrator at Base
Calibrated (cps)
19662935
Ratio

Field Check	Calibrated (cps)
Ratio	20032977

Neutron Calibration Tolerances MDN-C.A 501

	32.802
Ratio	
Base Check	0.670

Neutron Constants MDN-C.A 501

Neutron Source Id	N-1057	
Neutron Jig Number	NJ5736	
Air Hole Processing	Modified Ratio	
Caliper Source for Processing	Density Caliper	
Stand-off	0.00	inches
Mud Density	1.00	gm/cc
Limestone Sigma	7.10	cu
Sandstone Sigma	7.00	cu
Dolomite Sigma	4.70	cu
Formation Pressure Source	None	
Formation Pressure	N/A	kpsi
Temperature Source	None	
Temperature	N/A	degrees F
Mud Salinity	0.00	kppm
Salinity Correction	Not Applied	

Base Calibration on 15-SEP-2022,09:55
Field Check on 15-SEP-2022,09:55

Maximum Boundary Contrast	70.00	micro-sec/ft
Fluid Transit Time	189.00	micro-sec/ft
Limestone Transit Time	47.50	micro-sec/ft
Sandstone Transit Time	55.50	micro-sec/ft
Dolomite Transit Time	43.50	micro-sec/ft
Sonic used for Porosities	3-5' Compensated Sonic	
Correction for Sonde Skew	Applied	
Cycle Stretch Algorithm	Applied	
MN3FT	N/A	micro-sec
MX3FT	N/A	micro-sec
Hunt-Raymer Constant	83.13	micro-sec/ft
Sonde Mode		
Hole Type	Compensated	
	Open Hole	

Sonde Parameters

	Measured	Calibrated
Offset	N/A	0.0000
Free Pipe	N/A	
Peak Amplitude Source		N/A

Full Waveform Parameters

Use 3' Waveform to derive TR	N/A	
Use 4' Waveform to derive TR	N/A	
Use 5' Waveform to derive TR	N/A	
Use 6' Waveform to derive TR	N/A	
3' Waveform Discriminator Level	N/A	mV
4' Waveform Discriminator Level	N/A	mV
5' Waveform Discriminator Level	N/A	mV
6' Waveform Discriminator Level	N/A	mV
Waveform Discriminator Filter	N/A	
Semblance Window Width	N/A	micro-sec
Semblance Processing Enabled	N/A	
Tracking Boxes Enabled In Processing	N/A	

Induction Calibration MAI-C.A 482
Factory Loop Calibration
High Conductivity Reference Resistor Low Conductivity Reference Resistor

Factory Loop Calibration 25-SEP-2012,17:44
Field Check on 15-SEP-2022,11:41

	Measured Signal (unitless)	Reference Conductivity (mmho/m)		Calibration		
Array	Low	High	Low	High	Gain	Offset
1 (near)	16.2	461.2	9.3	966.2	2.150	-25.6
2	5.6	374.0	7.6	821.4	2.209	-4.8
3	3.1	250.7	5.2	566.0	2.265	-1.7
4 (far)	1.0	132.3			2.6	279.2

Tool Checks
Factory Reference ($\mathrm{mmho} / \mathrm{m}$)

Array	Low	High
1 (near)	-4.1	2086.8
2	14.7	1918.4
3	15.4	1680.9
4 (far)	11.6	1107.9

Before Survey (mmho/m)

Low	High
-4.1	2086.8
14.8	1918.3
15.4	1680.9
11.6	1107.8

82.2

Deg F
Tool Zero Corrections
Array

1 (near)	0.0	$\mathrm{mmho} / \mathrm{m}$
2	0.0	$\mathrm{mmho} / \mathrm{m}$
3	0.0	$\mathrm{mmho} / \mathrm{m}$
4 (far)	0.0	$\mathrm{mmho} / \mathrm{m}$

Induction Check Tolerances MAI-C.A 482

Low Array 1	-4.1	mmho/m	High Array 1
Low Array 2		mmho/m	High Array 2
Low Array 3		mho/m	High Array 3
ow Array 4	11.6	mmho/m	High Array

Induction Constants MAI-C.A 482
Induction Model RtAP-NC

Borehole Correction Constants				
Tool Centred		Yes		
Hole Size Source		Density Caliper		
Hole Size Constant Value		N/A	inches	
Stand-off Type		N/A		
Stand-off		N/A	inches	
Number of Fins on Stand-off		N/A		
Stand-off Fin Angle		N/A	degrees	
Stand-off Fin Width		N/A	inches	
Rm Source \quad Global Value: Constant Temperature				
Temp. for Rm Corr.		N/A		
Borehole Correction Method		Centred		
Squasher Start		0.0020	mhos/metre	
Squasher Offset		N/A	mhos/metre	
Borehole Normalisation				
DRM1	0.0000	DRC1		0.0000
DRM2	0.0000	DRC2		0.0000
MRM1	0.0000	MRC1		0.0000
MRM2	0.0000	MRC2		0.0000
SRM1	0.0000	SRC1		0.0000
SRM2	0.0000	SRC2		0.0000

Calibration Site Corrections

Channel 1 0.00
Channel 2
Channel 3

Symmetrised Receiver Gains
Receiver 1 1.00
Receiver $2 \quad 1.00$
Receiver 3 1.00
Receiver $4 \quad 1.00$
mmhos/metre mmhos/metre mmhos/metre mmhos/metre

Apparent Porosity and Water Saturation Constants

```
Saturation Exponent (N)
2.00
Saturation of Water for Apor 100.00
Resistivity of Water for Apor and Sw 0.05
0.05 ohm-m
Resistivity of Mud Filtrate for Sw 0.00
Source for Rt 0.00
Source for Rxo
0.00
```

Photo Density Calibration MPD-D.A 478

Density Calibration		Calibrated (sdu)		
Base Calibration	Near	Far	Near	Far
	1041	1182		
Background	47431	23381	59898	31131
Reference 1	19558	2264	25116	2544
Reference 2				

Field Check at Base $1041.2 \quad 1181.9$

Field Check
$1059.8 \quad 1216.3$

PE Calibration				
Base Calibration	Measured			Calibrated
	WS	WH	Ratio	Ratio
Background	200	931		
Reference 1	20971	47268	0.448	0.369
Reference 2	6098	19441	0.319	0.273

Field Check at Base
$200.4 \quad 931.0$
Field Check

202.2948 .2

Photo Density Calibration Tolerances MPD-D.A 478

Density Constants MPD-D.A 478

Density Source Id
Nylon Calibrator Number
Aluminium Calibrator Number
Density Shoe Profile
Caliper Source for Processing
PE Correction to Density
Mud Density
Mud Density Type
Mud Filtrate Density
Dry Hole Mud Filtrate Density
DNCT
CRCT
Density ZIA Correction
Precision Enhanced Density Processing
Compensated Density
Density Detector Type
Matrix Density (gm/cc)
2.68
0.00 五
0.00
0.00
0.00
0.00 0.00 0.00
0.00
0.00
0.00

Caliper Calibration MPD-D.A 478

Base Calibration

Reading No	Measured	Calibrator Size (in)
1	9834	4.00
2	18404	5.76
3	27244	7.97
4	35409	9.84
5	44527	11.88
6	N/A	N/A

Field Calibration

Measured Caliper (in)	Actual Caliper (in)
7.92	7.98

7.92
7.98

Caliper Calibration Tolerances MPD-D.A 478

Long Arm Field Cal.
7.92
 in

DOWNHOLE EQUIPMENT

Cablehead, 11 pin
CBH-DB 233 LG: 2.40 ft WT: 24.3 lb OD: 2.240 in

Compact Swivel Head Adaptor
SHA-J.B 581 LG: 2.30 ft WT: 22.0 lb OD: 2.244 in

Compact Comms Gamma
MCG-D.K 486 LG: 8.70 ft WT: 63.9 lb OD: 2.244 in

Compact Vee Arm Caliper
MVC-A.A 130 LG: 8.06 ft WT: 61.7 lb OD: 2.244 in

MCL CA126
MLK-C.A 126 LG: 3.17 ft WT: 26.5 lb OD: 2.240 in

Compact Navigation
MBN-D.A 176 LG: 11.81 ft WT: 70.5 lb OD: 2.244 in

Compact Neutron
MDN-C.A 501 LG: 5.04 ft WT: 50.7 lb OD: 2.244 in

Compact Density/Caliper
MPD-D.A 478 LG: 9.59 ft WT: 90.4 lb OD: 2.449 in

Compact Knuckle Joint
SKJ-E.B 469 LG: 2.17 ft WT: 24.3 lb OD: 2.244 in

AVOL - Annular Volume
HVOL - Hole Volume
CLDC - Density Caliper
DPRS - Sandstone Density Por.
DCOR - Density Correction
PDPE - PE

Compact Knuckle Joint
SKJ-E.B 581 LG: 2.17 ft WT: $24.3 \mathrm{lb} \quad$ OD: 2.244 in
Compact Two Arm Caliper
MTC-B.J 216 LG: 7.11 ft WT: 61.7 lb OD: 2.240 in
Compact Sonic

MSS-C.A 164 LG: 12.52 ft
WT: 72.8 lb
OD: 2.240 in

All measurements relative to tool zero.

		SNAKE RIVER OIL AND GAS, LLC			
COMPANY WELL		IRVIN \#1-19			
FIELD		WILDCAT			
PROVINCE/COUNTY		PAYETTE			
COUNTRY/STATE		U.S.A. / IDAHO			
Elevation Kelly Bushing	2204.50	feet	Last Reading	0.00	feet
Elevation Drill Floor	2204.50	feet	First Reading	5499.68	feet
Elevation Ground Level	2192.00	feet	Depth Driller Depth Logger	$\begin{aligned} & 5500.00 \\ & 5504.00 \end{aligned}$	feet feet

MEASURED DEPTH
COMPACT QUAD COMBO

